Advertisement

Palindromic Complexity of Trees

  • Srečko Brlek
  • Nadia Lafrenière
  • Xavier ProvençalEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)

Abstract

We consider finite trees with edges labeled by letters on a finite alphabet \(\varSigma \). Each pair of nodes defines a unique labeled path whose trace is a word of the free monoid \(\varSigma ^*\). The set of all such words defines the language of the tree. In this paper, we investigate the palindromic complexity of trees and provide hints for an upper bound on the number of distinct palindromes in the language of a tree.

Keywords

Words Trees Language Palindromic complexity Sidon sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allouche, J.P., Baake, M., Cassaigne, J., Damanik, D.: Palindrome complexity. Theoretical Computer Science 292(1), 9–31 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balková, L., Pelantová, E., Starosta, S.: Proof of the Brlek-Reutenauer conjecture. Theoretical Computer Science 475, 120–125 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berthé, V., Vuillon, L.: Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Mathematics 223(1–3), 27–53 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of infinite words. International Journal on Foundation of Computer Science 15(2), 293–306 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brlek, S., Reutenauer, C.: Complexity and palindromic defect of infinite words. Theoretical Computer Science 412(4–5), 493–497 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Crochemore, M., Iliopoulos, C.S., Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Tyczyński, W., Waleń, T.: The maximum number of squares in a tree. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    de Luca, A.: Sturmian words: Structure, combinatorics, and their arithmetics. Theoretical Computer Science 183(1), 45–82 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Domenjoud, E., Provençal, X., Vuillon, L.: Palindromic language of thin discrete planes (to appear)Google Scholar
  9. 9.
    Domenjoud, E., Vuillon, L.: Geometric palindromic closure. Uniform Distribution Theory 7(2), 109–140 (2012)MathSciNetGoogle Scholar
  10. 10.
    Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and Rauzy. Theoretical Computer Science 255(1–2), 539–553 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. Journal of the London Mathematical Society. Second Series 16, 212–215 (1941)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Combin. Theory Ser. A 82(1), 112–120 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Glen, A., Justin, J.: Episturmian words: a survey. Theoretical Informatics and Applications. Informatique Théorique et Applications 43(3), 403–442 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gowers, T.: What are dense Sidon subsets of \(\{1,2, \ldots , n\}\) like? (2012). gowers.wordpress.com/2012/07/13/what-are-dense-sidon-subsets-of-12-n-like/
  15. 15.
    Hof, A., Knill, O., Simon, B.: Singular continuous spectrum for palindromic Schrödinger operators. Comm. in Mathematical Physics 174(1), 149–159 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Labbé, S., Reutenauer, C.: A \(d\)-dimensional extension of Christoffel words. Discrete & Computational Geometry (2015). http://arxiv.org/abs/1404.4021
  17. 17.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Srečko Brlek
    • 1
  • Nadia Lafrenière
    • 1
  • Xavier Provençal
    • 2
    Email author
  1. 1.Université du Québec à MontréalMontréalCanada
  2. 2.Université de SavoieChambéryFrance

Personalised recommendations