Recognisable Languages over Monads

  • Mikołaj BojańczykEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)


This paper proposes monads as a framework for algebraic language theory. Examples of monads include words and trees, finite and infinite. Each monad comes with a standard notion of an algebra, called an Eilenberg-Moore algebra, which generalises algebras studied in language theory like semigroups or \(\omega \)-semigroups. On the abstract level of monads one can prove theorems like the Myhill-Nerode theorem, the Eilenberg theorem; one can also define profinite objects.


Boolean Algebra Full Version Follow Diagram Commute Tree Language Combinatorial Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bojanczyk, M.: Nominal monoids. Theory Comput. Syst. 53(2), 194–222 (2013)MathSciNetCrossRefGoogle Scholar
  2. Bedon, N., Rispal, C.: Schützenberger and Eilenberg theorems for words on linear orderings. J. Comput. Syst. Sci. 78(2), 517–536 (2012)MathSciNetCrossRefGoogle Scholar
  3. Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas], pp. 107–132 (2008)Google Scholar
  4. Carton, O., Colcombet, T., Puppis, G.: Regular languages of words over countable linear orderings. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 125–136. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  5. Eilenberg, S.: Automata, languages, and machines, vol. A (1974)Google Scholar
  6. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. The Journal of Logic and Algebraic Programming 79(2), 189–213 (2010)MathSciNetCrossRefGoogle Scholar
  7. Ésik, Z., Weil, P.: On logically defined recognizable tree languages. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 195–207. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  8. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  9. Gehrke, M., Grigorieff, S., Pin, J.É.: A topological approach to recognition. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 151–162. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. Toruńczyk, S., Bojańczyk, M., Parys, P.: The mso+u theory of \(({\mathbb{N}},<)\) is undecidable (2015). CoRR, arXiv:1502.04578
  11. Perrin, D., Pin, J.-É.: Infinite Words: Automata, Semigroups, Logic and Games. Elsevier (2004)Google Scholar
  12. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14(1), 1–10 (1982)MathSciNetCrossRefGoogle Scholar
  13. Steinby, M.: A theory of tree language varieties. In: Tree Automata and Languages, pp. 57–82 (1992)Google Scholar
  14. Toruńczyk, S.: Languages of profinite words and the limitedness problem. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 377–389. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. Wilke, T.: An Eilenberg theorem for infinity-languages. In: Leach Albert, J., Monien, B., Rodríguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 588–599. Springer, Heidelberg (1991) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of WarsawWarsawPoland

Personalised recommendations