Advertisement

Experimental computation as an ontological game changer: The impact of modern mathematical computation tools on the ontology of mathematics

  • David H. BaileyEmail author
  • Jonathan M. Borwein

Abstract

Robust, concrete and abstract, mathematical computation and inference on the scale now becoming possible should change the discourse about many matters mathematical. These include: what mathematics is, how we know something, how we persuade each other, what suffices as a proof, the infinite, mathematical discovery or invention, and other such issues.

Keywords

Periodic Orbit Computer Algebra System Decimal Digit Lorenz Attractor Symmetric Periodic Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. M. Abrams and S. H. Strogatz, “Chimera states in a ring of nonlocally coupled oscillators,” Intl. J. of Bifur. and Chaos, vol. 16 (2006), 21–37.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Aragon, J. M. Borwein and M. Tam, “Douglas-Rachford feasibility methods for matrix completion problems.” ANZIAM Journal, July 2014, http://arxiv.org/abs/1308.4243.
  3. 3.
    M. Atiyah, et al, “Responses to ‘Theoretical Mathematics: Toward a Cultural Synthesis of Mathematics and Theoretical Physics,’ by A. Jaffe and F. Quinn,” Bulletin of the American Mathematical Society, vol. 30, no. 2 (Apr 1994), 178–207.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Avigad, “Computers in mathematical inquiry,” in The Philosophy of Mathematical Practice, P. Mancuso ed., Oxford University Press, 2008, 302–316.CrossRefGoogle Scholar
  5. 5.
    D. H. Bailey, R. Barrio and J. M. Borwein, “High-precision computation: Mathematical physics and dynamics,” Appl. Math. and Comp., vol. 218 (2012), 10106–10121.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    D. H. Bailey and J. M. Borwein, “Computation and theory of extended Mordell-Tornheim-Witten sums. Part II,” Journal of Approximation Theory (special issue in honour of Dick Askey turning 80), vol. 189 (2015), 115–140. DOI: http://dx.doi.org/10.1016/j.jat.2014.10.004.
  7. 7.
    D. H. Bailey and J. M. Borwein, “Computer-assisted discovery and proof.” Tapas in Experimental Mathematics, 21–52, in Contemporary Mathematics, vol. 457, American Mathematical Society, Providence, RI, 2008.Google Scholar
  8. 8.
    D. H. Bailey and J. M. Borwein, “Experimental Applied Mathematics.” As a Final Perspective in the Princeton Companion to Applied Mathematics. Entry VIII.6, 925–932, 2015.Google Scholar
  9. 9.
    D. H. Bailey and J. M. Borwein, “Exploratory experimentation and computation,” Notices of the AMS, vol. 58 (Nov 2011), 1410–19.zbMATHMathSciNetGoogle Scholar
  10. 10.
    D. H. Bailey and J. M. Borwein, “Hand-to-hand combat with thousand-digit integrals,” J. Comp. Science, vol. 3 (2012), 77–86.CrossRefGoogle Scholar
  11. 11.
    D. Bailey, J. Borwein, N. Calkin, R. Girgensohn, R. Luke and V. Moll, Experimental Mathematics in Action, A K Peters, Natick, MA, 2007.zbMATHGoogle Scholar
  12. 12.
    D. Bailey, J. Borwein, R. Crandall and M. Rose, “Expectations on Fractal Sets.” Applied Mathematics and Computation. vol. 220 (Sept), 695–721. DOI: http://dx.doi.org/10.1016/j.amc.2013.06.078.
  13. 13.
    D. H. Bailey, J. M. Borwein and A. D. Kaiser, “Automated simplification of large symbolic expressions,” Journal of Symbolic Computation, vol. 60 (Jan 2014), 120–136, http://www.sciencedirect.com/science/article/pii/S074771711300117X.
  14. 14.
    D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein,“Ten Problems in Experimental Mathematics,” American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), 481–409.zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    D. H. Bailey, J. M. Borwein, M. Lopez de Prado and Q. J. Zhu, “Pseudo-mathematics and financial charlatanism: The effects of backtest over fitting on out-of-sample performance,” Notices of the American Mathematical Society, May 2014, http://ssrn.com/abstract=2308659.
  16. 16.
    D. H. Bailey, J. M. Borwein, M. Lopez de Prado and Q. J. Zhu, “The probability of backtest overfitting,” Financial Mathematics, to appear, March 2015. http://ssrn.com/abstract=2326253.
  17. 17.
    D. H. Bailey, J. M. Borwein, A. Mattingly and G. Wightwick, “The Computation of Previously Inaccessible Digits of π 2 and Catalan’s Constant,” Notices of the American Mathematical Society, vol. 60 (2013), no. 7, 844–854.Google Scholar
  18. 18.
    D. H. Bailey, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic Constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), 903–913.zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Baillie, D. Borwein, and J. Borwein, “Some sinc sums and integrals,” American Math. Monthly, vol. 115 (2008), no. 10, 888–901.Google Scholar
  20. 20.
    J. M. Borwein, “The Experimental Mathematician: The Pleasure of Discovery and the Role of Proof,” International Journal of Computers for Mathematical Learning, 10 (2005), 75–108. CECM Preprint 02:178; 264, http://docserver.carma.newcastle.edu.au/264.
  21. 21.
    J. M. Borwein, “Exploratory Experimentation: Digitally-assisted Discovery and Proof,” in ICMI Study 19: On Proof and Proving in Mathematics Education, G. Hanna and M. de Villiers, eds., New ICMI Study Series, 15, Springer-Verlag, 2012, http://www.carma.newcastle.edu.au/jon/icmi19-full.pdf.
  22. 22.
    J. M. Borwein, “Implications of Experimental Mathematics for the Philosophy of Mathematics,” Ch. 2 (33–61) and cover image in Proof and Other Dilemmas: Mathematics and Philosophy, Bonnie Gold and Roger Simons, eds., MAA Spectrum Series, July 2008. D-drive Preprint 280, http://www.carma.newcastle.edu.au/jon/implications.pdf.
  23. 23.
    J. M. Borwein, “The SIAM 100 Digits Challenge,” Extended review in the Mathematical Intelligencer, vol. 27 (2005), 40–48.Google Scholar
  24. 24.
    J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st Century, A K Peters, second edition, 2008.Google Scholar
  25. 25.
    J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics: Computational Roads to Discovery, A K Peters, Natick, MA, 2004.Google Scholar
  26. 26.
    J. M. Borwein, O-Y. Chan and R. E. Crandall, “Higher-dimensional box integrals,” Experimental Mathematics, vol. 19 (2010), 431–435.Google Scholar
  27. 27.
    J. M. Borwein, C. Maitland and M. Skerritt, “Computation of an improved lower bound to Giuga’s primality conjecture,” Integers 13 (2013) #A67, http://www.westga.edu/~integers/cgi-bin/get.cgi.
  28. 28.
    J. M. Borwein, I. J. Zucker and J. Boersma, “The evaluation of character Euler double sums,” Ramanujan Journal, vol. 15 (2008), 377–405.zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    R. E. Crandall, “Theory of ROOF Walks,” 2007, http://www.perfscipress.com/papers/ROOF11_psipress.pdf.
  30. 30.
    D. Easley, M. Lopez de Prado and M. O’Hara, High-Frequency Trading, Risk Books, London, 2013.Google Scholar
  31. 31.
    L. R. Franklin, “Exploratory Experiments,” Philosophy of Science, vol. 72 (2005), 888–899.CrossRefGoogle Scholar
  32. 32.
    M. Giaquinto, Visual Thinking in Mathematics. An Epistemological Study, Oxford University Press, New York, 2007.Google Scholar
  33. 33.
    J. Gleick, Chaos: The Making of a New Science, Viking Penguin, New York, 1987.zbMATHGoogle Scholar
  34. 34.
    J. Gravner and D. Griffeath, “Modeling snow crystal growth: A three-dimensional mesoscopic approach,” Phys. Rev. E, vol. 79 (2009), 011601.CrossRefGoogle Scholar
  35. 35.
    J. Guillera, “Hypergeometric identities for 10 extended Ramanujan-type series,” Ramanujan Journal, vol. 15 (2008), 219–234.zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    T. C. Hales, “Formal Proof,” Notices of the American Mathematical Society, vol. 55, no. 11 (Dec. 2008), 1370–1380.zbMATHMathSciNetGoogle Scholar
  37. 37.
    Paul Halmos, Celebrating 50 Years of Mathematics, Springer, 1991.Google Scholar
  38. 38.
    G. Hanna and M. de Villiers (Eds.), On Proof and Proving in Mathematics Education, the 19th ICMI Study, New ICMI Study Series, 15, Springer-Verlag, 2012.Google Scholar
  39. 39.
    A. Jaffe and F. Quinn, “‘Theoretical Mathematics’: Toward a Cultural synthesis of Mathematics and Theoretical Physics,” Bulletin of the American Mathematical Society, vol. 29, no. 1 (Jul 1993), 1–13.zbMATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Mark Joshi, The Concepts and Practice of Mathematical Finance, Cambridge University Press, 2008.zbMATHGoogle Scholar
  41. 41.
    J. E. Littlewood, A Mathematician’s Miscellany, Methuen, London, 1953, reprinted by Cambridge University Press, 1986.Google Scholar
  42. 42.
    M. Livio, Is God a Mathematician?, Simon and Schuster, New York, 2009.Google Scholar
  43. 43.
    B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, New York, 1982.zbMATHGoogle Scholar
  44. 44.
    M. Minovitch, “A method for determining interplanetary free-fall reconnaissance trajectories,” JPL Tech. Memo TM-312-130, (23 Aug 1961), 38–44.Google Scholar
  45. 45.
    Erik Panzer, “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals,” http://arxiv.org/abs/1403.3385.
  46. 46.
    M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, A K Peters, Natick, MA, 1996.zbMATHGoogle Scholar
  47. 47.
    G. Pólya, Mathematical discovery: On understanding, learning, and teaching problem solving, (Combined Edition), New York, John Wiley and Sons, New York, 1981.zbMATHGoogle Scholar
  48. 48.
    R. Preston, “The Mountains of Pi,” New Yorker, 2 Mar 1992, http://www.newyorker.com/archive/content/articles/050411fr_archive01.
  49. 49.
    H. K. Sørenson, “Exploratory experimentation in experimental mathematics: A glimpse at the PSLQ algorithm,” in B. Lowe, ed., Philosophy of Mathematics: Sociological Aspects and Mathematical Practice, Thomas Muller, London, 20–10, 341–360.Google Scholar
  50. 50.
    V. Stodden, D. H. Bailey, J. M. Borwein, R. J. LeVeque, W. Rider and W. Stein, “Setting the default to reproducible: Reproducibility in computational and experimental mathematics,” manuscript, 2 Feb 2013, http://www.davidhbailey.com/dhbpapers/icerm-report.pdf.
  51. 51.
    H. S. Wilf, “Mathematics: An experimental science,” The Princeton Companion to Mathematics, Princeton University Press, 2008.Google Scholar
  52. 52.
    H. S. Wilf and D. Zeilberger, “Rational Functions Certify Combinatorial Identities,” Journal of the American Mathematical Society, vol. 3 (1990), 147–158.zbMATHMathSciNetCrossRefGoogle Scholar
  53. 53.
    S. Wolfram, A New Kind of Science, Wolfram Media, Champaign, IL, 2002.zbMATHGoogle Scholar
  54. 54.
    W. Zudilin, “Ramanujan-type formulae for 1∕π: A second wind,” 19 May 2008, http://arxiv.org/abs/0712.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Lawrence Berkeley National Laboratory (retired)BerkeleyUSA
  2. 2.CARMA, The University of NewcastleUniversity DriveCallaghanmAustralia

Personalised recommendations