Zernike Moment-Based Approach for Detecting Duplicated Image Regions by a Modified Method to Reduce Geometrical and Numerical Errors

  • Thuong Le-Tien
  • Tan Huynh-Ngoc
  • Tu Huynh-Kha
  • Luong Marie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9158)

Abstract

In the paper, the approach is focused on the Zernike Moment-based model of ROI image (Region of Interest) and its parameters for an efficient image processing in the forensic issue. By considering the factors affecting the identification of an duplicated image, the change of ROI’s size is determined through the proposed algorithm. The proposed technique has shown a good improvement in reducing significantly Geometrical Errors (G.E) and Numerical Errors (N.E) performed better than that of the Zernike-based traditional technique. The duplicated detection program has been written by C++ and supporting OpenCV and Boost libraries that help to verify the images authentication.

Keywords

Zernike moments Geometrical errors Numerical errors Geometric moments Region of interest (ROI) FLANN library-Fast library for approximation nearest neighbors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Popescu, A.C., Farid, H.: Exposing Digital Forgeries in Color Filter Array Interpolated Images. IEEE Trans. Signal Processing 53(10), October 2005Google Scholar
  2. 2.
    Sheng, Y., Shen, L.: Orthogonal Fourier-Mellin moments for invariant pattern recognition. J. Opt. Soc. Am. A 11, 1748–1757 (1994)CrossRefGoogle Scholar
  3. 3.
    Farid, H.: Image Forgery Detection- A survey. IEEE Signal Processing Magazine 26(2), 16–25 (2009)CrossRefGoogle Scholar
  4. 4.
    Chong, C.-W.: A formulation of a new class of continuous orthogonal moment invariants, and the analysis of their computational aspects. Ph.D thesis, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia, May 2003Google Scholar
  5. 5.
    Liao, S.X., Pawlak, M.: On the accuracy of Zernike moments for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1358–1364 (1998)CrossRefGoogle Scholar
  6. 6.
    Chong, C.W., Raveendran, P., Mukundan, R.: A comparative analysis of algorithm for fast computation of Zernike moments. Pattern Recognition. 36(3), 731–742 (2003)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Papakostas, G.A., Boutalisn, Y.S., Papaodysseus, C.N., Fragoulis, D.K.: Numerical error analysis in Zernike moments computation. Image and Vision Computing 24 (2006)Google Scholar
  8. 8.
    Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. Pattern Analysis and Machine Intelligence 10(4), 496–513 (1988)MATHCrossRefGoogle Scholar
  9. 9.
  10. 10.
    Chong-Yaw, W., Paramesran, R.: On the computational aspects of Zernike moments. Image Vision Computing 25(6), 967–980 (2007)CrossRefGoogle Scholar
  11. 11.
    Arai, K., Barakbah, A.R.: Hierarchical K-means: an algorithm for centroids initialization for K-means. Reports of the Faculty of Science and Engineering, Saga University, pp. 840–8502 Saga Prefecture, Saga, Japan, 36, (1), (2007)Google Scholar
  12. 12.
    Liao, S.: Image analysis by moments. Ph.D thesis, University of Manitoba, Winnipeg, Manitoba, Canada (1993)Google Scholar
  13. 13.
    Kirschenhofer, P., Prodinger, H., Martınez, C.: Analysis of Hoare’s FIND Algorithm with Median-of-Three Partition. Journal Random Structures and Algorithm 10(1–2), 143–156 (1997)MATHCrossRefGoogle Scholar
  14. 14.
    Thacker, N.A., Aherne, F.J., Rockett, P.I.: The Bhattacharyya Metric as an Absolute Similarity Measure for Frequency Coded Data. TIPR 1997, pp. 9–11, Prague, June, 1997Google Scholar
  15. 15.
    Amerini, I., Ballan, L., Caldelli, R., Bimbo, A.D., Serra, G.: A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Security 6(3), 1099–1110 (2011)CrossRefGoogle Scholar
  16. 16.
    Christlein, V., Riess, C., et al.: An Evaluation of Popular Copy-Move Forgery Detection Approaches. IEEE Transactions on Information Forensics and Security 7(6), 1841–1854 (2012)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thuong Le-Tien
    • 1
  • Tan Huynh-Ngoc
    • 2
  • Tu Huynh-Kha
    • 3
  • Luong Marie
    • 4
  1. 1.Dept. of Electrical Electronics Eng.HCM City University of TechnologyHo Chi Minh CityVietnam
  2. 2.Faculty of Information TechniqueMannheim University of Applied ScienceMannheimGermany
  3. 3.School of Computer Science and Eng.HCM City International UniversityHo Chi Minh CityVietnam
  4. 4.Labo L2TI, Institut GalileeUniversity of Paris 13ParisFrance

Personalised recommendations