Gender Classification from Face Images Based on Gradient Directional Pattern (GDP)

  • Faisal AhmedEmail author
  • Padma Polash Paul
  • Patrick Wang
  • Marina Gavrilova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9156)


This paper presents an appearance-based facial feature descriptor based on the gradient directional pattern (GDP) for gender classification from face images. The GDP operator encodes the texture information of a local neighborhood by quantizing the gradient directions of the neighbors with respect to the center. The facial feature descriptor is computed by first dividing the face image into a number of sub-regions and then concatenating the individual GDP histograms computed from the corresponding sub-regions. Then, principal component analysis (PCA) is applied on the obtained face descriptor in order to reduce the feature dimensionality. We use a support vector machine (SVM) for the classification task. Experimental analysis on a large database comprising 1800 facial images shows promising results for the proposed method, as compared to some well-known appearance-based face descriptors.


Gender classification Gradient directional pattern (GDP) Principal component analysis (PCA) Support vector machine (SVM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdi, H., Valentin, D., Edelman, B., O’Toole, A.: More about the difference between men and women: Evidence from linear neural network and principal component approach. Neural Computing 7(6), 1160–1164 (1995)CrossRefGoogle Scholar
  2. 2.
    Ahmed, F.: Gradient directional pattern: a robust feature descriptor for facial expression recognition. IET Electronics Letters 48(19), 1203–1204 (2012)CrossRefGoogle Scholar
  3. 3.
    Ahmed, F., Kabir, M.H.: Directional ternary pattern (dtp) for facial expression recognition. In: IEEE International Conference on Consumer Electronics, pp. 265–266 (2012)Google Scholar
  4. 4.
    Ahmed, F., Kabir, M.H.: Facial feature representation with directional ternary pattern (dtp): application to gender classification. In: IEEE International Conference on Information Reuse and Integration, pp. 159–164 (2012)Google Scholar
  5. 5.
    Brunelli, R., Poggio, T.: Hyperbf networks for gender classification. In: DARPA Image Understanding Workship, pp. 311–314 (1992)Google Scholar
  6. 6.
    Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 541–547 (2008)CrossRefGoogle Scholar
  7. 7.
    Fasel, B., Luettin, J.: Automatic facial expression analysis: A survey. Pattern Recognition 36(1), 259–275 (2003)zbMATHCrossRefGoogle Scholar
  8. 8.
    Jabid, T., Kabir, M.H., Chae, O.: Gender classification using local directional pattern (ldp). In: International Conference on Pattern Recognition, pp. 2162–2165 (2010)Google Scholar
  9. 9.
    Jabid, T., Kabir, M.H., Chae, O.: Local directional pattern for face recognition. In: IEEE International Conference on Consumer Electronics, pp. 329–330 (2010)Google Scholar
  10. 10.
    Jabid, T., Kabir, M.H., Chae, O.: Robust facial expression recognition based on local directional pattern. ETRI Journal 32(5), 784–794 (2010)CrossRefGoogle Scholar
  11. 11.
    Jabid, T., Kabir, M.H., Chae, O.: Local directional pattern (ldp) for face recognition. International Journal of Innovative Computing, Information and Control 8(4), 2423–2437 (2012)Google Scholar
  12. 12.
    Jain, A., Huang, J.: Integrating independent components and linear discriminant analysis for gender classification. In: International Conference on Automatic Face and Gesture Recognition, pp. 159–163 (2004)Google Scholar
  13. 13.
    Kim, H.C., Kim, D., Ghahramani, Z., Bang, S.Y.: Appearance-based gender classification with gaussian processes. Pattern Recognition Letters 27(6), 618–626 (2006)CrossRefGoogle Scholar
  14. 14.
    Lyons, M., Budynek, J., Plante, A., Akamatsu, S.: Classifying facial attributes using a 2-d gabor wavelet representation and discriminant analysis. In: International Conference on Automatic Face and Gesture Recognition, pp. 202–207 (2000)Google Scholar
  15. 15.
    Makinen, E., Raisamo, R.: An experimental comparison of gender classification methods. Pattern Recognition Letters 29, 1544–1556 (2008)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machince Intelligence 24(7), 971–987 (2002)CrossRefGoogle Scholar
  17. 17.
    Phillips, P., Wechler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16(10), 295–306 (1998)CrossRefGoogle Scholar
  18. 18.
    Rivera, A.R., Castillo, J.R., Chae, O.: Local directional number pattern for face analysis: face and expression recognition. IEEE Transactions on Image Processing 22(5), 1740–1752 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sun, N., Zheng, W., Sun, C., Zou, C., Zhao, L.: Gender classification based on boosting local binary pattern. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 194–201. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  20. 20.
    Sun, Z., Bebis, G., Yuan, X., Louis, S.J.: Genetic feature subset selection for gender classification: a comparison study. In: IEEE Workshop on Applications of Computer Vision, pp. 165–170 (2002)Google Scholar
  21. 21.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–182. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  22. 22.
    Zhao, G., Pietikainen, M.: Boosted multi-resolution spatiotemporal descriptors for facial expression recognition. Pattern Recognition Letters 30(12), 1117–1127 (2009)CrossRefGoogle Scholar
  23. 23.
    Zhao, S., Gao, Y., Zhang, B.: Sobel-lbp. In: IEEE International Conference on Image Processing, pp. 2144–2147 (2008)Google Scholar
  24. 24.
    Zhao, W., Chellappa, R., Phillips, P.J.: Face recognition: A literature survey. ACM Computing Survey 35(4), 399–458 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Faisal Ahmed
    • 1
    Email author
  • Padma Polash Paul
    • 1
  • Patrick Wang
    • 2
  • Marina Gavrilova
    • 1
  1. 1.Department of Computer ScienceUniversity of CalgaryCalgaryCanada
  2. 2.College of Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations