Advertisement

#Worldcup2014 on Twitter

  • Wilson Seron
  • Ezequiel Zorzal
  • Marcos G. QuilesEmail author
  • Márcio P. Basgalupp
  • Fabricio A. Breve
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9155)

Abstract

A microblogging, such as the Twitter, is a Social Networking Service that allows the publication of short messages. Currently, Twitter has more than 270 million monthly active users, and it is widely used to discuss the most variety of topics. Due to the large amount of information circulating on Twitter, and the facility to publish and read messages through the web or mobile devices, Twitter has attracted the interest of the general public, companies, media etc. By analyzing the Twitter’s stream of data, one can identify trends, events, or even the feelings of its users. Here, we introduce a dataset of tweets about the World Cup 2014, collected from January to August of 2014; present some descriptive statistics about the data; and, finally, we show a sentiment analysis study about the Brazilian population regarding to the Brazilian national team.

Keywords

Social Network Site Opinion Mining Sentiment Analysis National Team Portuguese Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Languages in Social Media, pp. 30–38. Association for Computational Linguistics (2011)Google Scholar
  2. 2.
    Aston, N., Liddle, J., Hu, W.: Twitter sentiment in data streams with perceptron. Journal of Computer and Communications (2014)Google Scholar
  3. 3.
    Barbosa, L., Feng, J.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)Google Scholar
  4. 4.
    Bifet, A., Frank, E.: Sentiment knowledge discovery in twitter streaming data. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp. 1–15. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning, 1st edn. Springer (2006)Google Scholar
  6. 6.
    Bollen, J., Mao, H., Pepe, A.: Modeling public mood and emotion: twitter sentiment and socio-economic phenomena. In: ICWSM (2011)Google Scholar
  7. 7.
    Ellison, N.B., Steinfield, C., Lampe, C.: The benefits of facebook “friends:” social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication 12(4), 1143–1168 (2007)CrossRefGoogle Scholar
  8. 8.
    Gautam, G., Yadav, D.: Sentiment analysis of twitter data using machine learning approaches and semantic analysis. In: 2014 Seventh International Conference on Contemporary Computing (IC3), pp. 437–442. IEEE (2014)Google Scholar
  9. 9.
    Go, A., Huang, L., Bhayani, R.: Twitter sentiment analysis. Entropy 17 (2009)Google Scholar
  10. 10.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge University Press, Cambridge (2008)zbMATHCrossRefGoogle Scholar
  11. 11.
    Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)Google Scholar
  12. 12.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC (2010)Google Scholar
  13. 13.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and trends in information retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  14. 14.
    Saif, H., He, Y., Alani, H.: Semantic sentiment analysis of twitter. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 508–524. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th International Conference on World Wide Web, pp. 851–860. ACM (2010)Google Scholar
  16. 16.
    Silva, C., Ribeiro, B.: The importance of stop word removal on recall values in text categorization. In: Proceedings of the International Joint Conference on Neural Networks, 2003, vol. 3, pp. 1661–1666. IEEE (2003)Google Scholar
  17. 17.
    Tang, D., Wei, F., Qin, B., Liu, T., Zhou, M.: Coooolll: A deep learning system for twitter sentiment classification. SemEval 2014, 208 (2014)Google Scholar
  18. 18.
    Thelwall, M., Buckley, K., Paltoglou, G.: Sentiment in twitter events. Journal of the American Society for Information Science and Technology 62(2), 406–418 (2011)CrossRefGoogle Scholar
  19. 19.
    Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1031–1040. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wilson Seron
    • 1
  • Ezequiel Zorzal
    • 1
  • Marcos G. Quiles
    • 1
    Email author
  • Márcio P. Basgalupp
    • 1
  • Fabricio A. Breve
    • 2
  1. 1.Institute of Science and TechnologyFederal University of São Paulo (UNIFESP)São José dos CamposBrazil
  2. 2.São Paulo State University (UNESP)Rio ClaroBrazil

Personalised recommendations