Advertisement

Non-E-Overlapping, Weakly Shallow, and Non-Collapsing TRSs are Confluent

  • Masahiko SakaiEmail author
  • Michio Oyamaguchi
  • Mizuhito Ogawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9195)

Abstract

A term is weakly shallow if each defined function symbol occurs either at the root or in the ground subterms, and a term rewriting system is weakly shallow if both sides of a rewrite rule are weakly shallow. This paper proves that non-E-overlapping, weakly-shallow, and non-collapsing term rewriting systems are confluent by extending reduction graph techniques in our previous work [19] with towers of expansions.

References

  1. 1.
    Comon, H., Haberstrau, M., Jouannaud, J.-P.: Syntacticness, cycle-syntacticness, and shallow theories. Inf. Comput. 111, 154–191 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Godoy, G., Tiwari, A.: Confluence of shallow right-linear rewrite systems. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 541–556. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Gomi, H., Oyamaguchi, M., Ohta, Y.: On the church-rosser property of root-E-overlapping and strongly depth-preserving term rewriting systems. IPS J 39(4), 992–1005 (1998)MathSciNetGoogle Scholar
  4. 4.
    Gramlich, B.: Confluence without termination via parallel critical pairs. In: Kirchner, H. (ed.) CAAP 1996. LNCS, vol. 1059, pp. 211–225. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reason. 47(4), 481–501 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems. J. ACM 27, 797–821 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termination. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 258–273. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297 (1970)Google Scholar
  9. 9.
    Klop, J.W.: Term Rewriting Systems, in Handbook of Logic in Computer Science, vol. 2. Oxford University Press, New York (1993) Google Scholar
  10. 10.
    Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Mitsuhashi, I., Oyamaguch, M., Jacquemard, F.: The confluence problem for flat TRSs. In: Calmet, J., Ida, T., Wang, D. (eds.) AISC 2006. LNCS (LNAI), vol. 4120, pp. 68–81. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  12. 12.
    Mitsuhashi, I., Oyamaguchi, M., Matsuura, K.: On the \(E\)-overlapping property of Wweak monadic TRSs. IPS J. 53(10), 2313–2327 (2012). (in Japanese)zbMATHGoogle Scholar
  13. 13.
    Ogawa, M., Ono, S.: On the uniquely converging property of nonlinear term rewriting systems. Technical report of IEICE, COMP89–7, pp. 61–70 (1989)Google Scholar
  14. 14.
    Okui, S.: Simultaneous critical pairs and church-rosser property. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 2–16. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  15. 15.
    van Oostrom, V.: Development closed critical pairs. In: Dowek, G., Heering, J., Meinke, K., Möller, B. (eds.) HOA 1995. LNCS, vol. 1074, pp. 185–200. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  16. 16.
    Oyamaguchi, M., Ohta, Y.: A new parallel closed condition for Church-Rosser of left-linear term rewriting systems. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 187–201. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  17. 17.
    Rosen, B.K.: Tree-manipulating systems and Church-Rosser theorems. J. ACM 20, 160–187 (1973)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sakai, M., Wang, Y.: Undecidable properties on length-two string rewriting systems. ENTCS 204, 53–69 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sakai, M., Ogawa, M.: Weakly-non-overlapping non-collapsing shallow term rewriting systems are confluent. Inf. Process. Lett. 110, 810–814 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sakai, M., Oyamaguchi, M., Ogawa, M.: Non-E-overlapping and weakly shallow TRSs are confluent (extended abstract). IWC 34–38, 2014 (2014)zbMATHGoogle Scholar
  21. 21.
    Toyama, Y.: Commutativity of term rewriting systems. In: Programming of Future Generation Computer II, pp. 393–407 (1988)Google Scholar
  22. 22.
    Toyama, Y., Oyamaguchi, M.: Church-Rosser property and unique normal form property of non-duplicating term rewriting systems. In: Lindenstrauss, N., Dershowitz, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 316–331. Springer, Heidelberg (1995) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Masahiko Sakai
    • 1
    Email author
  • Michio Oyamaguchi
    • 1
  • Mizuhito Ogawa
    • 2
  1. 1.Graduate School of Information ScienceNagoya UniversityNagoyaJapan
  2. 2.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations