A Polite Non-Disjoint Combination Method: Theories with Bridging Functions Revisited

  • Paula Chocron
  • Pascal Fontaine
  • Christophe Ringeissen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9195)

Abstract

The Nelson-Oppen combination method is ubiquitous in Satisfiability Modulo Theories solvers. However, one of its major drawbacks is to be restricted to disjoint unions of theories. We investigate the problem of extending this combination method to particular non-disjoint unions of theories connected via bridging functions. The motivation is, e.g., to solve verification problems expressed in a combination of data structures connected to arithmetic with bridging functions such as the length of lists and the size of trees. We present a sound and complete combination procedure à la Nelson-Oppen for the theory of absolutely free data structures, including lists and trees. This combination procedure is then refined for standard interpretations. The resulting theory has a nice politeness property, enabling combinations with arbitrary decidable theories of elements.

References

  1. 1.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. ACM Trans. Comput. Log. 10(1), 4 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baader, F., Ghilardi, S.: Connecting many-sorted theories. J. Symb. Log. 72(2), 535–583 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Chocron, P., Fontaine, P., Ringeissen, C.: A gentle non-disjoint combination of satisfiability procedures. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 122–136. Springer, Heidelberg (2014). http://hal.inria.fr/hal-00985135 Google Scholar
  5. 5.
    Chocron, P., Fontaine, P., Ringeissen, C.: A Polite Non-Disjoint Combination Method: Theories with Bridging Functions Revisited (Extended Version) (2015). http://hal.inria.fr
  6. 6.
    Fontaine, P., Ranise, S., Zarba, C.G.: Combining lists with non-stably infinite theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 51–66. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  7. 7.
    Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. J. Autom. Reasoning 33(3–4), 221–249 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jovanović, D., Barrett, C.: Polite theories revisited. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 402–416. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)CrossRefMATHGoogle Scholar
  10. 10.
    Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of abelian groups. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 51–66. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures for unions of theories with a shared counting operator. Fundam. Inf. 105(1–2), 163–187 (2010)MathSciNetMATHGoogle Scholar
  12. 12.
    Pham, T.-H., Whalen, M.W.: An improved unrolling-based decision procedure for algebraic data types. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 129–148. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  14. 14.
    Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with bridging functions. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 67–83. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  15. 15.
    Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with abstractions. In: Hermenegildo, M.V., Palsberg, J. (eds.) Principles of Programming Languages (POPL), pp. 199–210. ACM, New York (2010)Google Scholar
  16. 16.
    Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In: Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  17. 17.
    Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson-Oppen combination procedure. In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems (FroCoS), Applied Logic, pp. 103–120. Kluwer Academic Publishers (1996)Google Scholar
  18. 18.
    Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoret. Comput. Sci. 290(1), 291–353 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  20. 20.
    Zarba, C.G.: Combining lists with integers. In: International Joint Conference on Automated Reasoning (Short Papers), Technical report DII 11/01, pp. 170–179. University of Siena (2001)Google Scholar
  21. 21.
    Zarba, C.G.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 363–376. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  22. 22.
    Zarba, C.G.: Combining sets with cardinals. J. Autom. Reasoning 34(1), 1–29 (2005)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for term algebras with integer constraints. Inf. Comput. 204(10), 1526–1574 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Paula Chocron
    • 1
  • Pascal Fontaine
    • 2
  • Christophe Ringeissen
    • 2
  1. 1.IIIA-CSICBellaterraCataloniaSpain
  2. 2.INRIAUniversité de Lorraine and LORIANancyFrance

Personalised recommendations