Advertisement

Beagle – A Hierarchic Superposition Theorem Prover

  • Peter BaumgartnerEmail author
  • Joshua Bax
  • Uwe Waldmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9195)

Abstract

Beagle is an automated theorem prover for first-order logic modulo built-in theories. It implements a refined version of the hierarchic superposition calculus. This system description focuses on Beagle ’s proof procedure, background reasoning facilities, implementation, and experimental results.

Keywords

Hierarchic Superposition Beagle Reasonable Background Minimal Unsatisfiable Subsets Aggressive Simplification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Logic Comput. 4(3), 217–247 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput 5, 193–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D.(eds.) SMT Workshop (2010)Google Scholar
  5. 5.
    Baumgartner, P.: SMTtoTPTP - A converter for theorem proving formats. In: Felty, A., Middeldorp, A. (eds.) CADE-25. LNCS(LNAI), pp. 152–169. Springer, Heidelberg (2015) Google Scholar
  6. 6.
    Baumgartner, P., Bax, J., Waldmann, U.: Finite quantification in hierarchic theorem proving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 152–167. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Machine Intelligence, vol. 7, pp. 91–99. American Elsevier, New York (1972)Google Scholar
  9. 9.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009) CrossRefzbMATHGoogle Scholar
  11. 11.
    Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. Mathematics in Computer Science, pp. 1–30 (2012)Google Scholar
  12. 12.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR: Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings, pp. 18–33. Seattle, WA, USA (2006)Google Scholar
  14. 14.
    Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. In: ACM/IEEE Conference on Supercomputing, pp. 4–13. ACM (1991)Google Scholar
  15. 15.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  16. 16.
    SMT-LIB, The Satisfiability Modulo Theories Library. http://smt-lib.org/
  17. 17.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF Parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  18. 18.
    Sutcliffe, G.: The 7th IJCAR automated theorem proving system competition - CASC-J7. AI Communications, 28 (2015). To appearGoogle Scholar
  19. 19.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NICTA and Australian National UniversityCanberraAustralia
  2. 2.MPI für InformatikSaarbrückenGermany

Personalised recommendations