Beagle – A Hierarchic Superposition Theorem Prover

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9195)

Abstract

Beagle is an automated theorem prover for first-order logic modulo built-in theories. It implements a refined version of the hierarchic superposition calculus. This system description focuses on Beagle ’s proof procedure, background reasoning facilities, implementation, and experimental results.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Logic Comput. 4(3), 217–247 (1994)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput 5, 193–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  4. 4.
    Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta, A., Kroening, D.(eds.) SMT Workshop (2010)Google Scholar
  5. 5.
    Baumgartner, P.: SMTtoTPTP - A converter for theorem proving formats. In: Felty, A., Middeldorp, A. (eds.) CADE-25. LNCS(LNAI), pp. 152–169. Springer, Heidelberg (2015) Google Scholar
  6. 6.
    Baumgartner, P., Bax, J., Waldmann, U.: Finite quantification in hierarchic theorem proving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 152–167. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Machine Intelligence, vol. 7, pp. 91–99. American Elsevier, New York (1972)Google Scholar
  9. 9.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge (2009) CrossRefMATHGoogle Scholar
  11. 11.
    Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. Mathematics in Computer Science, pp. 1–30 (2012)Google Scholar
  12. 12.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR: Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings, pp. 18–33. Seattle, WA, USA (2006)Google Scholar
  14. 14.
    Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. In: ACM/IEEE Conference on Supercomputing, pp. 4–13. ACM (1991)Google Scholar
  15. 15.
    Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  16. 16.
    SMT-LIB, The Satisfiability Modulo Theories Library. http://smt-lib.org/
  17. 17.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF and CNF Parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Sutcliffe, G.: The 7th IJCAR automated theorem proving system competition - CASC-J7. AI Communications, 28 (2015). To appearGoogle Scholar
  19. 19.
    Sutcliffe, G., Schulz, S., Claessen, K., Baumgartner, P.: The TPTP typed first-order form with arithmetic. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 406–419. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NICTA and Australian National UniversityCanberraAustralia
  2. 2.MPI für InformatikSaarbrückenGermany

Personalised recommendations