Encoding Dependency Pair Techniques and Control Strategies for Maximal Completion

  • Haruhiko Sato
  • Sarah Winkler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9195)


This paper describes two advancements of SAT-based Knuth-Bendix completion as implemented in Maxcomp. (1) Termination techniques using the dependency pair framework are encoded as satisfiability problems, including dependency graph and reduction pair processors. (2) Instead of relying on pure maximal completion, different SAT-encoded control strategies are exploited.

Experiments show that these developments let Maxcomp improve over other automatic completion tools, and produce novel complete systems.


Term rewriting Completion SAT encoding Dependency pairs 


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  3. 3.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. JAR 40(2–3), 195–220 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  5. 5.
    Klein, D., Hirokawa, N.: Maximal completion. In: RTA, vol. 10 of LIPIcs, pp. 71–80 (2011)Google Scholar
  6. 6.
    Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Sato, H., Winkler, S.: A satisfiability encoding of dependency pair techniques for maximal completion. In: WST (2014)Google Scholar
  8. 8.
    Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving termination using recursive path orders and SAT solving. In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. 9.
    Sternagel, T., Zankl, H.: KBCV – Knuth-Bendix Completion Visualizer. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 530–536. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Stump, A., Löchner, B.: Knuth-Bendix completion of theories of commuting group endomorphisms. IPL 98(5), 195–198 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Wehrman, I., Stump, A., Westbrook, E.: Slothrop: knuth-bendix completion with a modern termination checker. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 287–296. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  12. 12.
    Winkler, S., Sato, H., Middeldorp, A., Kurihara, M.: Multi-completion with termination tools. JAR 50(3), 317–354 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Science of Computer Programming (2014). doi: 10.1016/j.scico.2014.07.009
  14. 14.
    Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filterings. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 579–590. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  15. 15.
    Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  2. 2.Institute of Computer ScienceUniversity of InnsbruckInnsbruckAustria

Personalised recommendations