Evaluating Matrix Circuits

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9198)


The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP, which is shown by a reduction to polynomial identity testing (PIT). Conversely, the compressed word problem for the linear group \(\mathsf {SL}_3(\mathbb {Z})\) is equivalent to PIT. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in \(\mathsf {DET} \subseteq {\mathsf {NC}}^2\). Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as PIT for skew arithmetical circuits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Comput. Complex. 8(2), 99–126 (1999)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)MATHCrossRefGoogle Scholar
  3. 3.
    Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic circuits: Depth reduction and size lower bounds. Theor. Comput. Sci. 209(1–2), 47–86 (1998)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theor. Comput. Sci. 107(1), 3–30 (1993)MATHCrossRefGoogle Scholar
  5. 5.
    Auslander, L.: On a problem of Philip Hall. Annals of Mathematics 86(2), 112–116 (1967)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: From word to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Biss, D.K., Dasgupta, S.: A presentation for the unipotent group over rings with identity. Journal of Algebra 237(2), 691–707 (2001)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inform. Control 64, 2–22 (1985)MATHCrossRefGoogle Scholar
  9. 9.
    Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. System Sci. 65, 695–716 (2002)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-line programs. J. Assoc. Comput. Mach. 30(1), 217–228 (1983)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: derandomizing the XOR lemma. In: Proc. STOC 1997, pp. 220–229. ACM Press (1997)Google Scholar
  12. 12.
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kargapolov, M.I., Merzljakov, J.I.: Fundamentals of the Theory of Groups. Springer (1979)Google Scholar
  14. 14.
    König, D., Lohrey, M.: Evaluating matrix circuits (2015). arXiv.orgGoogle Scholar
  15. 15.
    König, D., Lohrey, M.: Parallel identity testing for algebraic branching programs with big powers and applications (2015). arXiv.orgGoogle Scholar
  16. 16.
    Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24(3), 522–526 (1977)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5), 1210–1240 (2006)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology 4(2), 241–299 (2012)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lohrey, M.: The Compressed Word Problem for Groups. SpringerBriefs in Mathematics. Springer (2014)Google Scholar
  20. 20.
    Lohrey, M.: Rational subsets of unitriangular groups. International Journal of Algebra and Computation (2015). doi: 10.1142/S0218196715400068 MATHMathSciNetGoogle Scholar
  21. 21.
    Robinson, D.: Parallel Algorithms for Group Word Problems. Ph.D. thesis, UCSD (1993)Google Scholar
  22. 22.
    Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer (1995)Google Scholar
  23. 23.
    Simon, H.-U.: Word problems for groups and contextfree recognition. In: Proceedings of Fundamentals of Computation Theory, FCT 1979, pp. 417–422. Akademie-Verlag (1979)Google Scholar
  24. 24.
    Swan, R.: Representations of polycyclic groups. Proc. Am. Math. Soc. 18, 573–574 (1967)MATHMathSciNetGoogle Scholar
  25. 25.
    Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proc. Structure in Complexity Theory Conference, pp. 270–284. IEEE Computer Society (1991)Google Scholar
  26. 26.
    Vollmer, H.: Introduction to Circuit Complexity. Springer (1999)Google Scholar
  27. 27.
    Waack, S.: On the parallel complexity of linear groups. ITA 25(4), 265–281 (1991)MathSciNetGoogle Scholar
  28. 28.
    Wehrfritz, B.A.F.: Infinite Linear Groups. Springer (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universität SiegenSiegenGermany

Personalised recommendations