Advertisement

A New View on Grid Cells Beyond the Cognitive Map Hypothesis

  • Jochen KerdelsEmail author
  • Gabriele Peters
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9205)

Abstract

Grid cells in the entorhinal cortex are generally considered to be a central part of a path integration system supporting the construction of a cognitive map of the environment in the brain. Guided by this hypothesis existing computational models of grid cells provide a wide range of possible mechanisms to explain grid cell activity in this specific context. Here we present a complementary grid cell model that treats the observed grid cell behavior as an instance of a more abstract, general principle by which neurons in the higher-order parts of the cortex process information.

Keywords

Grid cell model Higher-order information processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azizi, A.H., Schieferstein, N., Cheng, S.: The transformation from grid cells to place cells is robust to noise in the grid pattern. Hippocampus 24(8), 912–919 (2014)CrossRefGoogle Scholar
  2. 2.
    Barry, C., Burgess, N.: Neural mechanisms of self-location. Current Biology 24(8), R330–R339 (2014)CrossRefGoogle Scholar
  3. 3.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer (2008)Google Scholar
  4. 4.
    Burak, Y.: Spatial coding and attractor dynamics of grid cells in the entorhinal cortex. Current Opinion in Neurobiology 25, 169–175 (2014), theoretical and computational neuroscienceGoogle Scholar
  5. 5.
    Burgess, N.: Grid cells and theta as oscillatory interference: Theory and predictions. Hippocampus 18(12), 1157–1174 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., Looger, L.L., Svoboda, K., Kim, D.S.: Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499(7458), 295–300 (2013)CrossRefGoogle Scholar
  7. 7.
    Delaunay, B.: Sur la sphère vide. Bull. Acad. Sci. URSS 1934(6), 793–800 (1934)Google Scholar
  8. 8.
    Franzius, M., Vollgraf, R., Wiskott, L.: From grids to places. Journal of Computational Neuroscience 22(3), 297–299 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fritzke, B.: Unsupervised ontogenetic networks. In: Fiesler, E., Beale, R. (eds.) Handbook of Neural Computation. Institute of Physics Publishing and Oxford University Press (1996)Google Scholar
  10. 10.
    Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press (1995)Google Scholar
  11. 11.
    Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.B.: Spatial representation in the entorhinal cortex. Science 305(5688), 1258–1264 (2004)CrossRefGoogle Scholar
  12. 12.
    Giocomo, L., Moser, M.B., Moser, E.: Computational models of grid cells. Neuron 71(4), 589–603 (2011)CrossRefGoogle Scholar
  13. 13.
    Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)CrossRefGoogle Scholar
  14. 14.
    Jia, H., Rochefort, N.L., Chen, X., Konnerth, A.: Dendritic organization of sensory input to cortical neurons in vivo. Nature 464(7293), 1307–1312 (2010)CrossRefGoogle Scholar
  15. 15.
    Jung, M.W., McNaughton, B.L.: Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3(2), 165–182 (1993)CrossRefGoogle Scholar
  16. 16.
    Kerdels, J., Peters, G.: A computational model of grid cells based on dendritic self-organized learning. In: Proceedings of the International Conference on Neural Computation Theory and Applications (2013)Google Scholar
  17. 17.
    Killian, N.J., Jutras, M.J., Buffalo, E.A.: A map of visual space in the primate entorhinal cortex. Nature 491(7426), 761–764 (11 2012)Google Scholar
  18. 18.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kropff, E., Treves, A.: The emergence of grid cells: Intelligent design or just adaptation? Hippocampus 18(12), 1256–1269 (2008)CrossRefGoogle Scholar
  20. 20.
    Martinetz, T.M., Schulten, K.: Topology representing networks. Neural Networks 7, 507–522 (1994)CrossRefGoogle Scholar
  21. 21.
    McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B.: Path integration and the neural basis of the ‘cognitive map’. Nat. Rev. Neurosci. 7(8), 663–678 (2006)CrossRefGoogle Scholar
  22. 22.
    Mhatre, H., Gorchetchnikov, A., Grossberg, S.: Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex (published online 2010). Hippocampus 22(2), 320–334 (2010)CrossRefGoogle Scholar
  23. 23.
    Moser, E.I., Moser, M.B.: A metric for space. Hippocampus 18(12), 1142–1156 (2008)CrossRefGoogle Scholar
  24. 24.
    Moser, E.I., Moser, M.B., Roudi, Y.: Network mechanisms of grid cells. Philosophical Transactions of the Royal Society B: Biological Sciences 369(1635) (2014)Google Scholar
  25. 25.
    O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Research 34(1), 171–175 (1971)CrossRefGoogle Scholar
  26. 26.
    O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press, Oxford (1978)Google Scholar
  27. 27.
    O’Keefe, J.: Place units in the hippocampus of the freely moving rat. Experimental Neurology 51(1), 78–109 (1976)CrossRefGoogle Scholar
  28. 28.
    Pilly, P.K., Grossberg, S.: How do spatial learning and memory occur in the brain? coordinated learning of entorhinal grid cells and hippocampal place cells. J. Cognitive Neuroscience, 1031–1054 (2012)Google Scholar
  29. 29.
    Rolls, E.T., Stringer, S.M., Elliot, T.: Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network: Computation in Neural Systems 17(4), 447–465 (2006)CrossRefGoogle Scholar
  30. 30.
    Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386–408 (1958)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P., Moser, M.B., Moser, E.I.: Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312(5774), 758–762 (2006)CrossRefGoogle Scholar
  32. 32.
    Solstad, T., Boccara, C.N., Kropff, E., Moser, M.B., Moser, E.I.: Representation of geometric borders in the entorhinal cortex. Science 322(5909), 1865–1868 (2008)CrossRefGoogle Scholar
  33. 33.
    Solstad, T., Moser, E.I., Einevoll, G.T.: From grid cells to place cells: A mathematical model. Hippocampus 16(12), 1026–1031 (2006)CrossRefGoogle Scholar
  34. 34.
    Stensola, H., Stensola, T., Solstad, T., Froland, K., Moser, M.B., Moser, E.I.: The entorhinal grid map is discretized. Nature 492(7427), 72–78 (2012)CrossRefGoogle Scholar
  35. 35.
    Taube, J., Muller, R., Ranck, J.: Head-direction cells recorded from the postsubiculum in freely moving rats. i. description and quantitative analysis. The Journal of Neuroscience 10(2), 420–435 (1990)Google Scholar
  36. 36.
    Tolman, E.C.: Cognitive maps in rats and men. Psychological Review 55, 189–208 (1948)CrossRefGoogle Scholar
  37. 37.
    Tóth, L.: Lagerungen in der Ebene: auf der Kugel und im Raum. Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Springer (1972)Google Scholar
  38. 38.
    Welinder, P.E., Burak, Y., Fiete, I.R.: Grid cells: The position code, neural network models of activity, and the problem of learning. Hippocampus 18(12), 1283–1300 (2008)CrossRefGoogle Scholar
  39. 39.
    Zhang, K.: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. The Journal of Neuroscience 16(6), 2112–2126 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of Hagen - Chair of Human-Computer InteractionHagenGermany

Personalised recommendations