How Can Cognitive Modeling Benefit from Ontologies? Evidence from the HCI Domain

  • Marc Halbrügge
  • Michael Quade
  • Klaus-Peter Engelbrecht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9205)


Cognitive modeling as a method has proven successful at reproducing and explaining human intelligent behavior in specific laboratory situations, but still struggles to produce more general intelligent capabilities. A promising strategy to address this weakness is the addition of large semantic resources to cognitive architectures. We are investigating the usefulness of this approach in the context of human behavior during software use. By adding world knowledge from a Wikipedia-based ontology to a model of human sequential behavior, we achieve quantitatively and qualitatively better fits to human data.The combination of model and ontology yields additional insights that cannot be explained by the model or the ontology alone.


Cognitive modeling Ontology Human performance Human error Memory for goals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altmann, E.M., Trafton, J.G.: Memory for goals: An activation-based model. Cognitive Science 26(1), 39–83 (2002)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)CrossRefGoogle Scholar
  3. 3.
    Anderson, J.R., Lebiere, C.: The Newell test for a theory of cognition. Behavioral and Brain Sciences 26(05), 587–601 (2003)Google Scholar
  4. 4.
    Bates, D., Maechler, M., Bolker, B., Walker, S.: lme4: Linear mixed-effects models using Eigen and S4 (2013), r package version 1.0-5Google Scholar
  5. 5.
    Brysbaert, M., Buchmeier, M., Conrad, M., Jacobs, A.M., Bölte, J., Böhl, A.: The word frequency effect: A review of recent developments and implications for the choice of frequency estimates in German. Experimental Psychology 58(5), 412 (2011)CrossRefGoogle Scholar
  6. 6.
    Douglass, S., Ball, J., Rodgers, S.: Large declarative memories in ACT-R. Tech. rep., Manchester, UK (2009)Google Scholar
  7. 7.
    Emond, B.: WN-LEXICAL: An ACT-R module built from the WordNet lexical database. In: Proceedings of the Seventh International Conference on Cognitive Modeling (2006)Google Scholar
  8. 8.
    Fellbaum, C.: Wordnet. In: Poli, R., Healy, M., Kameas, A. (eds.) Theory and Applications of Ontology: Computer Applications, pp. 231–243. Springer, Dordrecht (2010)Google Scholar
  9. 9.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology 47(6), 381–391 (1954)CrossRefGoogle Scholar
  10. 10.
    Fu, W.T., Pirolli, P.: SNIF-ACT: A cognitive model of user navigation on the world wide web. Human-Computer Interaction 22, 355–412 (2007)Google Scholar
  11. 11.
    Halbrügge, M.: ACT-CV: Bridging the gap between cognitive models and the outer world. In: Brandenburg, E., Doria, L., Gross, A., Günzlera, T., Smieszek, H. (eds.) Grundlagen und Anwendungen der Mensch-Maschine-Interaktion, pp. 205–210. Universitätsverlag der TU Berlin, Berlin (2013)Google Scholar
  12. 12.
    Halbrügge, M., Quade, M., Engelbrecht, K.P.: A predictive model of human error based on user interface development models and a cognitive architecture. In: Taatgen, N.A., van Vugt, M.K., Borst, J.P., Mehlhorn, K. (eds.) Proceedings of the 13th International Conference on Cognitive Modeling, pp. 238–243. University of Groningen, Groningen (2015)Google Scholar
  13. 13.
    Laird, J.: The Soar cognitive architecture. MIT Press, Cambridge (2012)Google Scholar
  14. 14.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web Journal (2014)Google Scholar
  15. 15.
    Norman, D.A.: Slips of the mind and an outline for a theory of action. Tech. rep., Center for Human Information Processing, San Diego, CA (1979)Google Scholar
  16. 16.
    Oltramari, A., Lebiere, C.: Extending Cognitive Architectures with Semantic Resources. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 222–231. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  17. 17.
    Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Transactions on Systems, Man and Cybernetics 13, 257–266 (1983)CrossRefGoogle Scholar
  18. 18.
    Reason, J.: Human Error. Cambridge University Press, New York (1990) CrossRefGoogle Scholar
  19. 19.
    Salvucci, D.D.: Endowing a cognitive architecture with world knowledge. In: Bello, P., Guarini, M., McShane, M., Scassellati, B. (eds.) Proc. CogSci 2014, pp. 1353–1358 (2014)Google Scholar
  20. 20.
    Schultheis, H., Barkowsky, T., Bertel, S.: LTM C - an improved long-term memory for cognitive architectures. In: Proceedings of the Seventh International Conference on Cognitive Modeling, pp. 274–279 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Marc Halbrügge
    • 1
  • Michael Quade
    • 2
  • Klaus-Peter Engelbrecht
    • 1
  1. 1.Quality and Usability Lab, Telekom Innovation LaboratoriesTechnische Universität BerlinBerlinGermany
  2. 2.DAI-Labor, Technische Universität BerlinBerlinGermany

Personalised recommendations