Advertisement

Anytime Bounded Rationality

  • Eric Nivel
  • Kristinn R. Thórisson
  • Bas Steunebrink
  • Jürgen Schmidhuber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9205)

Abstract

Dependable cyber-physical systems strive to deliver anticipative, multi-objective performance anytime, facing deluges of inputs with varying and limited resources. This is even more challenging for life-long learning rational agents as they also have to contend with the varying and growing know-how accumulated from experience. These issues are of crucial practical value, yet have been only marginally and unsatisfactorily addressed in AGI research. We present a value-driven computational model of anytime bounded rationality robust to variations of both resources and knowledge. It leverages continually learned knowledge to anticipate, revise and maintain concurrent courses of action spanning over arbitrary time scales for execution anytime necessary.

Keywords

Conjunctive Model Time Semantic Arbitrary Time Scale Cognitive Cycle Disjunctive Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111, 1036–1060 (2004)CrossRefGoogle Scholar
  2. 2.
    Bellas, F., Duro, R.J., Faiña, A., Souto, D.: Multilevel darwinist brain (MDB): Artificial evolution in a cognitive architecture for real robots. IEEE Transactions on Autonomous Mental Development 2(4), 340–354 (2010)CrossRefGoogle Scholar
  3. 3.
    Boddy, M., Dean, T.L.: Deliberation scheduling for problem solving in timeconstrained environments. Artificial Intelligence 67(2), 245–285 (1994)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cassimatis, N., Bignoli, P., Bugajska, M., Dugas, S., Kurup, U., Murugesan, A., Bello, P.: An architecture for adaptive algorithmic hybrids. IEEE Transactions on Systems, Man, and Cybernetics, Part B 40(3), 903–914 (2010)CrossRefGoogle Scholar
  5. 5.
    Horvitz, E., Rutledge, G.: Time-dependent utility and action under uncertainty. In: Proc. 7th Conference on Uncertainty in Artificial Intelligence, pp. 151−158. Morgan Kaufmann Publishers Inc. (1991)Google Scholar
  6. 6.
    Laird, J.E.: The Soar cognitive architecture. MIT Press (2012)Google Scholar
  7. 7.
    Langley, P., Choi, D., Rogers, S.: Interleaving learning, problem-solving, and execution in the ICARUS architecture. Technical report, Computational Learning Laboratory, CSLI, Stanford University (2005)Google Scholar
  8. 8.
    Madl, T., Baars, B.J., Franklin, S.: The timing of the cognitive cycle. PloS One 6(4), e14803 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv:1312.5602 (2013)Google Scholar
  10. 10.
    Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodríguez, M., Hernández, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, Antonio: Bounded Seed-AGI. In: Goertzel, B., Orseau, L., Snaider, J. (eds.) AGI 2014. LNCS, vol. 8598, pp. 85–96. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Nivel, E., Thórisson, K.R., Steunebrink, B.R., Dindo, H., Pezzulo, G., Rodriguez, M., Hernandez, C., Ognibene, D., Schmidhuber, J., Sanz, R., Helgason, H.P., Chella, A., Jonsson, G.K.: Autonomous acquisition of natural language. In: Proc. IADIS International Conference on Intelligent Systems & Agents 2014, pp. 58−66 (2014)Google Scholar
  12. 12.
    Shapiro, S.C., Ismail, H.O.: Anchoring in a grounded layered architecture with integrated reasoning. Robotics and Autonomous Systems 43(2-3), 97–108 (2003)CrossRefGoogle Scholar
  13. 13.
    Veness, J., Ng, K.S., Hutter, M., Uther, W., Silver, D.: A Monte-Carlo AIXI approximation. Journal of Artificial Intelligence Research 40(1), 95–142 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Wang, P.: Rigid Flexibility: The Logic of Intelligence. Springer (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eric Nivel
    • 1
  • Kristinn R. Thórisson
    • 1
    • 2
  • Bas Steunebrink
    • 3
  • Jürgen Schmidhuber
    • 3
  1. 1.Icelandic Institute for Intelligent MachinesReykjavikIceland
  2. 2.Reykjavik University, CADIAReykjavikIceland
  3. 3.The Swiss AI Lab IDSIA, USI & SUPSIMannoSwitzerland

Personalised recommendations