A Secure and Efficient Protocol for Electronic Treasury Auctions

  • Atilla Bektaş
  • Mehmet Sabır Kiraz
  • Osmanbey Uzunkol
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9024)


Auctions have become an important part of electronic commerce. Considering the gradually increasing importance of confidentiality and privacy in auction modeling, various designs have been proposed to ensure secure transmission especially in sealed-bid auctions. However, to the best of our knowledge there is no secure and privacy preserving Treasury Auction system. Looking at systems currently in use, many countries perform those auctions manually. Since all the bids are transferred to the system in clear form, confidentiality and privacy are not guaranteed. Therefore, the system is more vulnerable to potential threats especially due to the ongoing advances and developments in technology. In a secure electronic auction system, it is possible to determine the winner or the winners without revealing any private information. In this work, we propose a new, secure and efficient electronic auction protocol for Treasury Auctions based on secure multi-party computation, secret sharing and threshold homomorphic cryptosystem.


Treasury auctions Secure multi-party computation Threshold homomorphic encryption Confidentiality Privacy 


  1. 1.
    Bektaş, A.: On secure electronic auction process of government domestic debt securities in Turkey. Ph.D. thesis, Middle East Technical University, Ankara, Turkey, August 2013Google Scholar
  2. 2.
    Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, CCS 2008, pp. 257–266. ACM, New York (2008)Google Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10. ACM, New York (1988)Google Scholar
  4. 4.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. IACR Cryptology ePrint Archive 2008, 289 (2008). http://dblp.uni-trier.de/db/journals/iacr/iacr2008.html#BogdanovLW08
  5. 5.
    Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party computation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 57–64. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Brandt, F., Sandholm, T.W.: Efficient privacy-preserving protocols for multi-unit auctions. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 298–312. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  8. 8.
    Brandt, F., Sandholm, T.: On the existence of unconditionally privacy-preserving auction protocols. ACM Trans. Inf. Syst. Secur. 11(2), 1–21 (2008)CrossRefGoogle Scholar
  9. 9.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 11–19. ACM, New York (1988)Google Scholar
  10. 10.
    Cramer, R., Damgård, I.: Multiparty computation, an introduction. In: Contemporary Cryptology. Advanced Courses in Mathematics CRM Barcelona. Birkhauser Verlag AG (2005)Google Scholar
  11. 11.
    Damgård, I., Geisler, M., Krøigaard, M.: Homomorphic encryption and secure comparison. Int. J. Appl. Crypt. 1(1), 22–31 (2008). doi:10.1504/IJACT.2008.017048 CrossRefMATHGoogle Scholar
  12. 12.
    Garay, J.A., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Garay, J.A., Jakobsson, M.: Timed release of standard digital signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)Google Scholar
  15. 15.
    Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  16. 16.
    Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party computations. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 451–462. ACM, New York (2010)Google Scholar
  17. 17.
    Jónsson, K.V., Kreitz, G., Uddin, M.: Secure multi-party sorting and applications (2011)Google Scholar
  18. 18.
    Katti, R.S., Ababei, C.: Secure comparison without explicit XOR. CoRR abs/1204.2854 (2012)Google Scholar
  19. 19.
    Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold trust. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  20. 20.
    Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, EC 1999, pp. 129–139. ACM, New York (1999)Google Scholar
  22. 22.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer, Heidelberg (1999) Google Scholar
  23. 23.
    Schoenmakers, B., Tuyls, P.: Practical two-party computation based on the conditional gate. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 119–136. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  24. 24.
    Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Redwood City (2011) Google Scholar
  25. 25.
    Toft, T.: Sub-linear, secure comparison with two non-colluding parties. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 174–191. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  26. 26.
    Toft, T.: Sub-linear, secure comparison with two non-colluding parties. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 174–191. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  27. 27.
    Undersecretariat of Treasury: Annual Edns 200813. Technical report, Republic of Turkey Prime Ministry (2012)Google Scholar
  28. 28.
    Veugen, T.: Improving the DGK comparison protocol. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 49–54. WIFS 2012, Tenerife, Spain, Dec 2012Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Atilla Bektaş
    • 1
  • Mehmet Sabır Kiraz
    • 2
  • Osmanbey Uzunkol
    • 2
  1. 1.IAMMiddle East Technical UniversityAnkaraTurkey
  2. 2.MCS LabsTÜBİTAK BİLGEMKocaeliTurkey

Personalised recommendations