Preventing Scaling of Successful Attacks: A Cross-Layer Security Architecture for Resource-Constrained Platforms

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9024)


Key-establishment based on parameters of the communication channels is a highly attractive option for many applications that operate in a dynamic mobile environment with peer-to-peer association. So far, high usability and dynamic key management with the capability of perfect forward secrecy are very difficult to achieve for wireless devices which have to operate under strict resource constraints. Additionally, previous work has failed to address hybrid systems composed of physical layer security (PHYSEC) and asymmetric cryptography for key establishment. In this work we present the first hybrid system architecture suitable for resource-constrained platforms. As a result, long term deployment due to key diversity and forward/backward secrecy can be achieved while still satisfying the tight timing of an initial setup imposed by high user acceptance. Our design strongly focuses on reusing communication chip components for PHYSEC and makes use of efficient asymmetric cryptography (e.g., ECDH) augmented by physical layer security. Our prototype implementation demonstrates that our approach has the potential to dramatically reduce the cost of securing small embedded devices for the Internet of Things, and hence make mass production and deployment viable.


Channel-based key establishment Cross-layer protocol Forward secrecy Backward secrecy Scaling of attacks Internet of Things 


  1. 1.
    Alliance, W.F.: Wi-Fi Simple Configuration Technical Specification, Version 2.0.2 (2011)Google Scholar
  2. 2.
    Ambekar, A., Schotten, H.: Enhancing channel reciprocity for effective key management in wireless ad-hoc networks. In: Proceedings of Vehicular Technology Conference, Spring, Seoul, South Korea, May 2014Google Scholar
  3. 3.
    Ambekar, A., Hassan, M., Schotten, H.D.: Improving channel reciprocity for effective key management systems. In: 2012 International Symposium on Signals, Systems, and Electronics (ISSSE), pp. 1–4. IEEE (2012)Google Scholar
  4. 4.
  5. 5.
    Aono, T., Higuchi, K., Ohira, T., Komiyama, B., Sasaoka, H.: Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels. IEEE Trans. Antennas Propag. 53(11), 3776–3784 (2005)CrossRefGoogle Scholar
  6. 6.
    Atkins, D., Stallings, W., Zimmermann, P.: PGP message exchange formats. RFC 1991 (Informational), August 1996., obsoleted by RFC 4880
  7. 7.
    Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange, T., van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 341–360. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Bersani, F., Tschofenig, H.: The EAP-PSK protocol: A Pre-Shared Key Extensible Authentication Protocol (EAP) Method. RFC 4764 (Experimental), January 2007.
  9. 9.
    Bersani, F.: EAP shared key methods: a tentative synthesis of those proposed so far.
  10. 10.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak sponge function family main document. Submission to NIST (Round 2) 3 (2009)Google Scholar
  11. 11.
    Beyer, S.: ZigBee Applications in sub-1 GHz Frequency Resuage.
  12. 12.
    Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to use PGP. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES 2004, pp. 77–84. ACM, New York (2004).
  13. 13.
    Cisco: The Internet of Things - How the Next Evolution of the Internet is Changing Everything (2011).
  14. 14.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), August 2008., updated by RFCs 5746, 5878, 6176
  15. 15.
    Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated key exchanges. Des. Codes Cryptography 2(2), 107–125 (1992). CrossRefGoogle Scholar
  16. 16.
    Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 232–250. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  17. 17.
    Eberz, S., Strohmeier, M., Wilhelm, M., Martinovic, I.: A practical man-in-the-middle attack on signal-based key generation protocols. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 235–252. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Edman, M., Kiayias, A., Tang, Q., Yener, B.: On the security of key extraction from measuring physical quantities. arXiv preprint arXiv:1311.4591 (2013)
  19. 19.
    Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani, M.T.M.: On the power of power analysis in the real world: a complete break of the KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 203–220. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of RC4. In: Proceedings of the 4th Annual Workshop on Selected Areas of Cryptography, pp. 1–24 (2001)Google Scholar
  21. 21.
    Forum, W.R.: User Scenarios2020 - A Worldwide Wireless Future, WWRF OUTLOOK, July 2009Google Scholar
  22. 22.
    Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005) CrossRefGoogle Scholar
  23. 23.
    Group, I.W., et al.: IEEE 802.11-2007: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE 802.11 LAN Standards 2007 (2007)Google Scholar
  24. 24.
    Guillaume, R., Zenger, C., Mueller, A., Paar, C., Czylwik, A.: Fair comparison and evaluation of quantization schemes for phy-based key generation. In: 19th International OFDM Workshop 2014 (InOWo 2014), pp. 1–5, August 2014Google Scholar
  25. 25.
    Hamburg, M., Kocher, P., Marson, M.E.: Analysis of Intel’s Ivy Bridge digital random number generator (2012).
  26. 26.
    Hamida, S.T.B., Pierrot, J.B., Castelluccia, C.: An adaptive quantization algorithm for secret key generation using radio channel measurements. In: 2009 3rd International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–5. IEEE (2009)Google Scholar
  27. 27.
    Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your Ps and Qs: Detection of widespread weak keys in network devices. In: Proceedings of the 21st USENIX Security Symposium, August 2012Google Scholar
  28. 28.
    Hershey, J.E., Hassan, A.A., Yarlagadda, R.: Unconventional cryptographic keying variable management. IEEE Transact. Commun. 43(1), 3–6 (1995)CrossRefzbMATHGoogle Scholar
  29. 29.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pp. 12–24. ACM (1989)Google Scholar
  30. 30.
    Instruments, T.: TI Data Sheetsl.
  31. 31.
    Jakes, W.C.: Microwave Mobile Communications. Wiley, New York (1974) Google Scholar
  32. 32.
    Jana, S., Premnath, S.N., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy, S.V.: On the effectiveness of secret key extraction from wireless signal strength in real environments. In: Proceedings of the 15th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 321–332. ACM (2009)Google Scholar
  33. 33.
    Killmann, W., Schindler, W.: A proposal for: functionality classes for random number generators (2011), BSI, AIS 20/AIS 31Google Scholar
  34. 34.
    Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Radio-telepathy: extracting a secret key from unauthenticated wireless channel. In: Proceedings of the 14th ACM international Conference on Mobile Computing and Networking, pp. 128–139. ACM (2008)Google Scholar
  35. 35.
    MBED: Wifi dipcortex datasheet.
  36. 36.
    Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography. CRC Press Inc, Boca Raton (1997) zbMATHGoogle Scholar
  37. 37.
    NIST, S.: 800–22. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications (2000)Google Scholar
  38. 38.
    Orman, H.: The OAKLEY Key Determination Protocol. RFC 2412 (Informational), November 1998.
  39. 39.
    Patwari, N., Croft, J., Jana, S., Kasera, S.: High-rate uncorrelated bit extraction for shared secret key generation from channel measurements. IEEE Transact. Mob. Comput. 9(1), 17–30 (2010)CrossRefGoogle Scholar
  40. 40.
    Premnath, S., Jana, S., Croft, J., Gowda, P.L., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy, S.V.: Secret key extraction from wireless signal strength in real environments. IEEE Transact. Mob. Comput. 12(5), 917–930 (2013)CrossRefGoogle Scholar
  41. 41.
    Proakis, J.G.: Digital Communications. Mcgraw-Hill, New York (2008)Google Scholar
  42. 42.
    Rivera, J., van der Meulen, R.: Gartner Says the Internet of Things Installed Base Will Grow to 26 Billion Units By 2020 (2013).
  43. 43.
    Shiu, Y.S., Chang, S.Y., Wu, H.C., Huang, S.C.H., Chen, H.H.: Physical layer security in wireless networks: a tutorial. IEEE Wirel. Commun. 18(2), 66–74 (2011)CrossRefGoogle Scholar
  44. 44.
    Smith, G.S.: A direct derivation of a single-antenna reciprocity relation for the time domain. IEEE Transact. Antenna Propag. 52(6), 1568–1577 (2004)CrossRefGoogle Scholar
  45. 45.
    Specification, G.: Global positioning systems directorate systems engineering and integration interface specification (2012)Google Scholar
  46. 46.
    Stinson, D.: Cryptography: Theory and Practice. Discrete Mathematics and Its Applications, 3rd edn. Taylor & Francis, Boca Raton (2005) Google Scholar
  47. 47.
    Strobel, D., Driessen, B., Kasper, T., Leander, G., Oswald, D., Schellenberg, F., Paar, C.: Fuming acid and cryptanalysis: handy tools for overcoming a digital locking and access control system. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 147–164. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  48. 48.
    Tope, M.A., McEachen, J.C.: Unconditionally secure communications over fading channels. In: Military Communications Conference, MILCOM 2001. Communications for Network-Centric Operations: Creating the Information Force, vol. 1, pp. 54–58. IEEE (2001)Google Scholar
  49. 49.
    Viehboeck, S.: Brute forcing Wi-Fi Protected Setup (2011).
  50. 50.
    Wallace, J., Chen, C., Jensen, M.: Key generation exploiting MIMO channel evolution: algorithms and theoretical limits. In: 3rd European Conference on Antennas and Propagation, EuCAP 2009, pp. 1499–1503, March 2009Google Scholar
  51. 51.
    Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical report, University of North Carolina at Chapel Hill, July 2006Google Scholar
  52. 52.
    Wilhelm, M., Martinovic, I., Schmitt, J.B., Lenders, V.: Short paper: reactive jamming in wireless networks: how realistic is the threat? In: Proceedings of the fourth ACM conference on Wireless network security, pp. 47–52. ACM (2011)Google Scholar
  53. 53.
    Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251 (Proposed Standard), January 2006.
  54. 54.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard) , August 2008., updated by RFCs 5746, 5878, 6176
  55. 55.
    Zhang, J., Kasera, S.K., Patwari, N.: Mobility assisted secret key generation using wireless link signatures. In: Proceedings of International Conference on Computer Communications IEEE INFOCOM, pp. 1–5. IEEE (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Horst Görtz Institute for IT-Security (HGI)Ruhr-University BochumBochumGermany
  2. 2.Chair for Wireless Communications and NavigationUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations