Advertisement

Quantum Spacetime and Algebraic Quantum Field Theory

  • Dorothea Bahns
  • Sergio Doplicher
  • Gerardo Morsella
  • Gherardo Piacitelli
Chapter
Part of the Mathematical Physics Studies book series (MPST)

Abstract

We review the investigations on the quantum structure of spacetime, to be found at the Planck scale if one takes into account the operational limitations to the localization of events which result from the concurrence of Quantum Mechanics and General Relativity. We also discuss the different approaches to (perturbative) Quantum Field Theory on Quantum Spacetime, and some of the possible cosmological consequences.

Keywords

Minkowski Space Planck Scale Free Field Trap Surface Planck Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Amati, D., Ciafaloni, M., Veneziano, G.: Higher-order gravitational deflection and soft bremsstrahlung in Planckian energy superstring collisions. Nucl. Phys. B 347, 550 (1990)CrossRefADSGoogle Scholar
  2. 2.
    Bahns D.: On the ultraviolet-infrared mixing problem on the noncommutative Minkowski space. Ann. Henri Poincar/’e. To appearGoogle Scholar
  3. 3.
    Bahns D.: Ultraviolet finiteness of the averaged Hamiltonian on the noncommutative Minkowski space. arXiv:hep-th/0405224
  4. 4.
    Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: On the Unitarity problem in space-time noncommutative theories. Phys. Lett. B 533, 178–181 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  5. 5.
    Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Ultraviolet finite quantum field theory on quantum space-time. Commun. Math. Phys. 237, 221–241 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  6. 6.
    Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Field theory on noncommutative spacetimes: quasiplanar wick products. Phys. Rev. D 71, 1–12 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bahns, D., Doplicher, S., Fredenhagen, K., Piacitelli, G.: Quantum geometry on quantum spacetime: distance, area and volume operators. Commun. Math. Phys. 308, 567–589 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  8. 8.
    Bronstein M.P.: Quantum theory of weak gravitational fields. (Republication from Physikalische Zeitschrift der Sowjetunion, Band 9, Heft 23, pp. 140–157 (1936), English translation by M.A. Kurkov, edited by S. Deser) Gen. Relativ. Gravit. 44, 267–283 (2012)Google Scholar
  9. 9.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum physics. Commun. Math. Phys. 237, 31–68 (2003)MathSciNetCrossRefADSzbMATHGoogle Scholar
  10. 10.
    Buchholz, D., Ojima, I., Roos, H.: Thermodynamic properties of non-equilibrium states in quantum field theory. Ann. Phys. 297, 219–242 (2002)MathSciNetCrossRefADSzbMATHGoogle Scholar
  11. 11.
    Buchholz, D., Lechner, G., Summers, S.: Warped convolutions, rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  12. 12.
    Camelia G.A.: Testable scenario for relativity with minimum length. Phys. Lett. B 510, 255–263 (2001)Google Scholar
  13. 13.
    Dappiaggi, C., Pinamonti, N., Porrmann, M.: Local causal structures, Hadamard states and the principle of local covariance in quantum field theory. Commun. Math. Phys. 304, 459–498 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  14. 14.
    Doescher, C., Zahn, J.: Infrared cutoffs and the adiabatic limit in noncommutative spacetime. Phys. Rev. D 73, 045024 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Doplicher, S., Fredenhagen, K.: UnpublishedGoogle Scholar
  16. 16.
    Doplicher S.: Space-time and fields: a quantum texture. In: Karpacz, New developments in fundamental interaction theories, pp. 204–213. arXiv:hep-th/0105251 (2001)
  17. 17.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331, 39–44 (1994)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)MathSciNetCrossRefADSzbMATHGoogle Scholar
  19. 19.
    Doplicher, S.: The principle of locality: effectiveness, fate, and challenges. J. Math. Phys. 51, 015218 (2010)MathSciNetCrossRefADSzbMATHGoogle Scholar
  20. 20.
    Doplicher, S., Morsella, G., Pinamonti, N.: On quantum spacetime and the horizon problem. J. Geom. Phys. 74, 196–210 (2013)MathSciNetCrossRefADSzbMATHGoogle Scholar
  21. 21.
    Grosse, H., Lechner, G.: Wedge-local quantum fields and noncommutative minkowski space. JHEP 0711, 012 (2007)MathSciNetCrossRefADSzbMATHGoogle Scholar
  22. 22.
    Ijjas, A., Steinhardt, P.J., Loeb, A.: Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 723, 261–266 (2013). arXiv:1304.2785
  23. 23.
    Peebles P.J.E.: Principles of Physical Cosmology, Princeton University Press, Princeton (1993)Google Scholar
  24. 24.
    Perini, C., Tornetta G.N.: A scale covariant quantum spacetime. Rev. Math. Phys. To appear. arXiv:1211.7050
  25. 25.
    Piacitelli, G.: Nonlocal theories: new rules for old diagrams. JHEP 0408, 031 (2004). arXiv:hep-th/0403055
  26. 26.
    Piacitelli, G.: Twisted covariance as a non invariant restriction of the fully covariant dfr model. arXiv:0902.0575[hep-th]
  27. 27.
    Pinamonti, N., Siemssen, D.: Global existence of solutions of the semiclassical Einstein equation for cosmological spacetimes. Commun. Math. Phys. 334, 171–191 (2015). arXiv:1309.6303
  28. 28.
    Pinamonti, N.: On the initial conditions and solutions of the semiclassical Einstein equations in a cosmological scenario. Commun. Math. Phys. 305, 563–604 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  29. 29.
    Planck Collaboration. Planck 2013 results. I. Overview of products and scientific results. A&A. To appear. arXiv:1303.5602
  30. 30.
    Tomassini, L., Viaggiu, S.: Physically motivated uncertainty relations at the Planck length for an emergent non commutative spacetime. Class. Quantum Grav. 28, 075001 (2011)MathSciNetCrossRefADSzbMATHGoogle Scholar
  31. 31.
    Tomassini, L., Viaggiu, S.: Building non commutative spacetimes at the Planck length for Friedmann flat cosmologies. Class. Quantum Grav. 31, 185001 (2014)MathSciNetCrossRefADSzbMATHGoogle Scholar
  32. 32.
    Wald, R.M.: General Relativity, Chicago University Press, Chicago (1984)Google Scholar
  33. 33.
    Zahn, J.: Noncommutative (supersymmetric) electrodynamics in the Yang-Feldman formalism. Phys. Rev. D 82, 105033 (2010). arxiv:1008.2309

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dorothea Bahns
    • 1
  • Sergio Doplicher
    • 2
  • Gerardo Morsella
    • 3
  • Gherardo Piacitelli
    • 4
  1. 1.Mathematisches Institut and Courant Research Centre “Higher Order Structures in Mathematics”Universität GöttingenGöttingenGermany
  2. 2.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly
  3. 3.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly
  4. 4.SISSATriesteItaly

Personalised recommendations