Advertisement

Implicit Transpositions in Shortest DCJ Scenarios

  • Shuai Jiang
  • Max A. Alekseyev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9199)

Abstract

Genome rearrangements are large-scale evolutionary events that shuffle genomic architectures. The minimal number of such events between two genomes is often used in phylogenomic studies to measure the evolutionary distance between the genomes. Double-Cut-and-Join (DCJ) operations represent a convenient model of most common genome rearrangements (reversals, translocations, fissions, and fusions), while other genome rearrangements, such as transpositions, can be modeled by pairs of DCJs. Since the DCJ model does not directly account for transpositions, their impact on DCJ scenarios is unclear.

In the current work, we study implicit appearance of transpositions (as pairs of DCJs) in shortest DCJ scenarios and prove uniform lower and upper bounds for their proportion. Our results imply that implicit transpositions may be unavoidable and even appear in a significant proportion for some genomes. We estimate that in mammalian evolution transpositions constitute at least \(17\,\%\) of genome rearrangements.

Keywords

Genome rearrangements Transpositions DCJ 

Notes

Acknowledgments

The work was supported by the National Science Foundation under the grant No. IIS-1462107.

References

  1. 1.
    Alekseyev, M.A.: Multi-break rearrangements and breakpoint re-uses: from circular to linear genomes. J. Comput. Biol. 15(8), 1117–1131 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alekseyev, M.A., Pevzner, P.A.: Multi-break rearrangements and chromosomal evolution. Theor. Comput. Sci. 395(2), 193–202 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alexeev, N., Aidagulov, R., Alekseyev, M.A.: A computational method for the rate estimation of evolutionary transpositions. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part I. LNCS, vol. 9043, pp. 471–480. Springer, Heidelberg (2015) Google Scholar
  4. 4.
    Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and inverted transpositions. J. Comput. Biol. 14(5), 615–636 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Braga, M.D., Stoye, J.: The solution space of sorting by DCJ. J. Comput. Biol. 17(9), 1145–1165 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Eriksen, N.: \((1+\epsilon )\)-approximation of sorting by reversals and transpositions. In: Gascuel, O., Moret, B.M. (eds.) WABI 2001. LNCS, vol. 2149, pp. 227–237. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  7. 7.
    Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  8. 8.
    Jiang, S., Alekseyev, M.A.: Weighted genomic distance can hardly impose a bound on the proportion of transpositions. In: Bafna, V., Sahinalp, S.C. (eds.) RECOMB 2011. LNCS, vol. 6577, pp. 124–133. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Jiang, S., Alekseyev, M.A.: Linearization of median genomes under DCJ. In: Brown, D., Morgenstern, B. (eds.) WABI 2014. LNCS, vol. 8701, pp. 97–106. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Kasprzyk, A.: BioMart: driving a paradigm change in biological data management. Database 2011, bar049 (2011)Google Scholar
  11. 11.
    Ouangraoua, A., Bergeron, A.: Combinatorial structure of genome rearrangements scenarios. J. Comput. Biol. 17(9), 1129–1144 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ozery-Flato, M., Shamir, R.: Sorting by translocations via reversals theory. In: Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205, pp. 87–98. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  13. 13.
    Ranz, J., González, J., Casals, F., Ruiz, A.: Low occurrence of gene transposition events during the evolution of the genus Drosophila. Evolution 57(6), 1325–1335 (2003)CrossRefGoogle Scholar
  14. 14.
    Shao, M., Lin, Y., Moret, B.: Sorting genomes with rearrangements and segmental duplications through trajectory graphs. BMC Bioinform. 14(15), 1–8 (2013)Google Scholar
  15. 15.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.George Washington UniversityWashington DCUSA

Personalised recommendations