Advertisement

Generalized Hultman Numbers and the Distribution of Multi-break Distances

  • Nikita Alexeev
  • Anna Pologova
  • Max A. Alekseyev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9199)

Abstract

Genome rearrangements can be modeled by k-breaks, which break a genome at k positions and glue the resulting fragments in a new order. In particular, reversals, translocations, fusions, and fissions are modeled as 2-breaks, and transpositions are modeled as 3-breaks. While k-break rearrangements for \(k>3\) have not been observed in evolution, they are used in cancer genomics to model chromothripsis, a catastrophic event of multiple breakages happening in a genome simultaneously.

It is known that the k-break distance between two genomes (i.e., the minimal number of k-breaks needed to transform one genome into the other) can be computed in terms of cycle lengths of the breakpoint graph of these genomes. In the current work, we address the combinatorial problem of enumeration of genomes at a given k-break distance from a fixed genome. More generally, we enumerate genome pairs, whose breakpoint graph has a fixed distribution of cycle lengths.

Notes

Acknowledgements

The work is supported by the National Science Foundation under the grant No. IIS-1462107. The work of NA is also partially supported by RFBR grant 13-01-12422-ofi-m.

References

  1. 1.
    Alekseyev, M., Pevzner, P.: Multi-break rearrangements and chromosomal evolution. Theoret. Comput. Sci. 395(23), 193–202 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)CrossRefGoogle Scholar
  3. 3.
    Stephens, P.J., Greenman, C.D., Fu, B., Yang, F., Bignell, G.R., Mudie, L.J., Pleasance, E.D., Lau, K.W., Beare, D., Stebbings, L.A., McLaren, S., Lin, M.L., McBride, D.J., Varela, I., Nik-Zainal, S., Leroy, C., Jia, M., Menzies, A., Butler, A.P., Teague, J.W., Quail, M.A., Burton, J., Swerdlow, H., Carter, N.P., Morsberger, L.A., Iacobuzio-Donahue, C., Follows, G.A., Green, A.R., Flanagan, A.M., Stratton, M.R., Futreal, P.A., Campbell, P.J.: Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1), 27–40 (2011)CrossRefGoogle Scholar
  4. 4.
    Weinreb, C., Oesper, L., Raphael, B.: Open adjacencies and k-breaks: detecting simultaneous rearrangements in cancer genomes. BMC genomics 15(Suppl 6), S4 (2014)CrossRefGoogle Scholar
  5. 5.
    Hultman, A.: Toric permutations. Master’s thesis, Department of Mathematics, KTH, Stockholm, Sweden (1999)Google Scholar
  6. 6.
    Doignon, J.P., Labarre, A.: On Hultman numbers. J. Integer Sequences 10(6), 13 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bóna, M., Flynn, R.: The average number of block interchanges needed to sort a permutation and a recent result of stanley. Inf. Process. Lett. 109(16), 927–931 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grusea, S., Labarre, A.: The distribution of cycles in breakpoint graphs of signed permutations. Discrete Appl. Math. 161(10), 1448–1466 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Alexeev, N., Zograf, P.: Random matrix approach to the distribution of genomic distance. J. Comput. Biol. 21(8), 622–631 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Feijão, P., Martinez, F.V., Thévenin, A.: On the multichromosomal hultman number. In: Campos, S. (ed.) BSB 2014. LNCS, vol. 8826, pp. 9–16. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    The OEIS Foundation: The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org (2015)
  12. 12.
    Alexeev, N., Andersen, J., Penner, R., Zograf, P.: Enumeration of chord diagrams on many intervals and their non-orientable analogs (2013). arXiv preprint arXiv:1307.0967
  13. 13.
    Alexeev, N., Aidagulov, R., Alekseyev, M.A.: A computational method for the rate estimation of evolutionary transpositions. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015, Part I. LNCS, vol. 9043, pp. 471–480. Springer, Heidelberg (2015) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nikita Alexeev
    • 1
  • Anna Pologova
    • 2
  • Max A. Alekseyev
    • 1
  1. 1.George Washington UniversityWashington DCUSA
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations