Advertisement

A Methodology for Designing Dynamic Topology Control Algorithms via Graph Transformation

  • Roland Kluge
  • Gergely Varró
  • Andy Schürr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9152)

Abstract

This paper presents a constructive, model-driven methodology for designing dynamic topology control algorithms. The proposed methodology characterizes valid and high quality topologies with declarative graph constraints and formulates topology control algorithms as graph transformation systems. Afterwards, a well-known static analysis technique is used to enrich graph transformation rules with application conditions derived from the graph constraints to ensure that this improved approach always produces topologies that (i) are optimized wrt. to a domain-specific criterion, and (ii) additionally fulfill all the graph constraints.

Keywords

Topology control Graph constraints Static analysis 

Notes

Acknowledgment

This work has been funded by the German Research Foundation (DFG) within the Collaborative Research Center (CRC) 1053 – MAKI. The authors would like to thank Matthias Hollick (subprojects A03 and C01) for his valuable input.

References

  1. 1.
    Beydeda, S., Book, M., Gruhn, V.: Model-Driven Software Development, 15th edn. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Deckwerth, F., Varró, G.: Generating preconditions from graph constraints by higher order graph transformation. ECEASST 67, 1–14 (2014)Google Scholar
  3. 3.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: a new graph rewrite language based on the unified modeling language and java. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  5. 5.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)MathSciNetGoogle Scholar
  6. 6.
    Hausmann, J.H., Heckel, R., Sauer, S.: Extended model relations with graphical consistency conditions. In: Proceedings of the UML 2002 Workshop on Consistency Problems in UML-based Software Development, pp. 61–74 (2002)Google Scholar
  7. 7.
    Heckel, R., Wagner, A.: Ensuring consistency of conditional graph rewriting - a constructive approach. In: Proceedings of the Joint COMPUGRAPH/SEMAGRAPH Workshop. ENTCS, vol. 2, pp. 118–126. Elsevier (1995)Google Scholar
  8. 8.
    Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 131–140. ACM (2009)Google Scholar
  9. 9.
    Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor protocol through formal modeling and statistical model checking. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  10. 10.
    Koch, M., Mancini, L.V., Parisi-Presicce, F.: A graph-based formalism for RBAC. ACM Trans. Inf. Syst. Secur. 5(3), 332–365 (2002)CrossRefGoogle Scholar
  11. 11.
    Kulcsár, G., Stein, M., Schweizer, I., Varró, G., Mühlhäuser, M., Schürr, A.: Rapid prototyping of topology control algorithms by graph transformation. In: Proceedings of the 8th International Workshop on Graph-Based Tools. ECEASST, vol. 68 (2014)Google Scholar
  12. 12.
    Rensink, A., Schmidt, A., Varró, D.: Model checking graph transformations: a comparison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  13. 13.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, River Edge (1997) CrossRefGoogle Scholar
  14. 14.
    Santi, P.: Topology control in wireless ad hoc and sensor networks. ACM Comput. Surv. (CSUR) 37(2), 164–194 (2005)CrossRefGoogle Scholar
  15. 15.
    Schweizer, I., Wagner, M., Bradler, D., Mühlhäuser, M., Strufe, T.: kTC - Robust and adaptive wireless ad-hoc topology control. In: Proceedings of the 21st International Conference on Computer Communications and Networks (2012)Google Scholar
  16. 16.
    Taentzer, G., Goedicke, M., Meyer, T.: Dynamic change management by distributed graph transformation: towards configurable distributed systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 179–193. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  17. 17.
    Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development: Technology, Engineering, Management. John Wiley & Sons, Hoboken (2013) Google Scholar
  18. 18.
    Zave, P.: Using lightweight modeling to understand chord. SIGCOMM Comput. Commun. Rev. 42(2), 49–57 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Real-Time Systems LabTU DarmstadtDarmstadtGermany

Personalised recommendations