Property Access Traces for Source Incremental Model-to-Text Transformation

  • Babajide Ogunyomi
  • Louis M. Rose
  • Dimitrios S. Kolovos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9153)

Abstract

Automatic generation of textual artefacts (including code, documentation, configuration files, build scripts, etc.) from models in a software development process through the application of model-to-text (M2T) transformation is a common MDE activity. Despite the importance of M2T transformation, contemporary M2T languages lack support for developing transformations that scale with the size of the input model. As MDE is applied to systems of increasing size and complexity, a lack of scalability in M2T (and other) transformation languages hinders industrial adoption. In this paper, we propose a form of runtime analysis that can be used to identify the impact of source model changes on generated textual artefacts. The structures produced by this runtime analysis, property access traces, can be used to perform efficient source-incremental transformation: our experiments show an average reduction of 60% in transformation execution time compared to non-incremental (batch) transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M., Gilani, W.: MDE adoption in industry: challenges and success criteria. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol. 5421, pp. 54–59. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  2. 2.
    Kolovos, D., et al.: Scalability: the holy grail of model driven engineering. In: ChaMDE 2008 Workshop Proceedings, pp. 10–14 (2008)Google Scholar
  3. 3.
    Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM Systems Journal 45(3), 621–645 (2006)CrossRefGoogle Scholar
  4. 4.
    Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 1–16. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  5. 5.
    Ogunyomi, B.: Incremental model-to-text transformation (qualifying dissertation). Technical report (2013)Google Scholar
  6. 6.
    Egyed, A.: Automatically Detecting and Tracking Inconsistencies in Software Design Models. IEEE Transactions on Software Engineering 37(2), 188–204 (2011)CrossRefGoogle Scholar
  7. 7.
    Ogunyomi, B., Rose, L.M., Kolovos, D.S.: On the use of signatures for source incremental model-to-text transformation. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 84–98. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Shao, W., Mei, H.: Instant and incremental QVT transformation for runtime models. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 273–288. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.: A comparison of incremental triple graph grammar tools. In: Electronic Communications of the EASST, vol. 67 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Babajide Ogunyomi
    • 1
  • Louis M. Rose
    • 1
  • Dimitrios S. Kolovos
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations