ICGT 2015: Graph Transformation pp 121-137

# Reachability in Graph Transformation Systems and Slice Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)

## Abstract

In this work we show that the reachability problem for graph transformation systems is in the complexity class XP when parameterized with respect to the depth of derivations and the cutwidth of the source graph. More precisely, we show that for any set $$\mathcal {R}$$ of graph transformation rules, one can determine in time $$f(c,d)\cdot |G|\cdot |H|^{g(c,d)}$$ whether a graph G of cutwidth c can be transformed into a graph H in depth at most d by the application of graph transformation rules from $$\mathcal {R}$$. In particular, our algorithm runs in polynomial time when c and d are constants. On the other hand, we show that the problem becomes NP-hard if we allow $$c=O(|G|)$$ and $$d=5$$. In the case in which all transformation rules are monotone we get an algorithm running in time $$f(c,d)\cdot |G|^{O(c)}\cdot |H|$$. To prove our main theorems we will establish an interesting connection between graph transformation systems and regular slice languages. More precisely, we show that if $$\mathcal {A}$$ is a slice automaton representing a set $${\mathcal {L}}_{{\mathcal {G}}}(\mathcal {A})$$ of graphs, then one can construct in time linear in $$|\mathcal {A}|$$ a slice automaton $$\mathcal {N}(\mathcal {A})$$ representing the set of all graphs that can be obtained from graphs in $${\mathcal {L}}_{{\mathcal {G}}}(\mathcal {A})$$ by the application of one layer of transformation rules in $$\mathcal {R}$$.

### Keywords

Graph transformation systems Reachability Slice languages

## Notes

### Acknowledgements

I gratefully acknowledge financial support from the European Research Council, ERC grant agreement 339691, within the context of the project Feasibility, Logic and Randomness (FEALORA).

### References

1. 1.
Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S., Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and programming. Sci. Comput. Program. 34(1), 1–54 (1999)
2. 2.
Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-state graph transformation systems. Inf. Comput. 206(7), 869–907 (2008)
3. 3.
Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: a software engineering perspective. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 431–433. Springer, Heidelberg (2004)
4. 4.
Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math. Syst. Theory 20(2–3), 83–127 (1987)
5. 5.
Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: Rewriting Techniques and Applications, vol. 12, pp. 101–116 (2012)Google Scholar
6. 6.
Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005)
7. 7.
Bruggink, H.S., König, B.: On the recognizability of arrow and graph languages. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 336–350. Springer, Heidelberg (2008)
8. 8.
Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3), 241–265 (1996)
9. 9.
de Oliveira Oliveira, M.: Hasse diagram generators and petri nets. Fundamenta Informaticae 105(3), 263–289 (2010)
10. 10.
de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 445–457. Springer, Heidelberg (2012)
11. 11.
de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z-topologically orderable digraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 123–136. Springer, Heidelberg (2013)
12. 12.
Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225 (1992)Google Scholar
13. 13.
Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006) Google Scholar
14. 14.
Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: Switching and Automata Theory, pp. 167–180. IEEE Computer Society (1973)Google Scholar
15. 15.
Ehrig, H., Rosen, B.K.: Parallelism and concurrency of graph manipulations. Theoret. Comput. Sci. 11(3), 247–275 (1980)
16. 16.
Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of graphs. Acta Informatica 34, 773–803 (1997)
17. 17.
Poskitt, C.M., Plump, D.: Verifying total correctness of graph programs. Electron. Commun. EASST 61, 1–20 (2013)Google Scholar
18. 18.
Rensink, A.: Explicit state model checking for graph grammars. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 114–132. Springer, Heidelberg (2008)
19. 19.
Rozenberg, G., Ehrig, H.: Handbook of graph grammars and computing by graph transformation, vol. 1. World Scientific Publishing, Singapore (1999) Google Scholar
20. 20.
Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J. Algorithms 56(1), 1–24 (2005)
21. 21.
Thomas, W.: Finite-state recognizability of graph properties. Theorie des Automates et Applications 176, 147–159 (1992)Google Scholar

© Springer International Publishing Switzerland 2015

## Authors and Affiliations

1. 1.Institute of Mathematics - Academy of Sciences of the Czech RepublicPrahaCzech Republic