Reachability in Graph Transformation Systems and Slice Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)

Abstract

In this work we show that the reachability problem for graph transformation systems is in the complexity class XP when parameterized with respect to the depth of derivations and the cutwidth of the source graph. More precisely, we show that for any set \(\mathcal {R}\) of graph transformation rules, one can determine in time \(f(c,d)\cdot |G|\cdot |H|^{g(c,d)}\) whether a graph G of cutwidth c can be transformed into a graph H in depth at most d by the application of graph transformation rules from \(\mathcal {R}\). In particular, our algorithm runs in polynomial time when c and d are constants. On the other hand, we show that the problem becomes NP-hard if we allow \(c=O(|G|)\) and \(d=5\). In the case in which all transformation rules are monotone we get an algorithm running in time \(f(c,d)\cdot |G|^{O(c)}\cdot |H|\). To prove our main theorems we will establish an interesting connection between graph transformation systems and regular slice languages. More precisely, we show that if \(\mathcal {A}\) is a slice automaton representing a set \({\mathcal {L}}_{{\mathcal {G}}}(\mathcal {A})\) of graphs, then one can construct in time linear in \(|\mathcal {A}|\) a slice automaton \(\mathcal {N}(\mathcal {A})\) representing the set of all graphs that can be obtained from graphs in \({\mathcal {L}}_{{\mathcal {G}}}(\mathcal {A})\) by the application of one layer of transformation rules in \(\mathcal {R}\).

Keywords

Graph transformation systems Reachability Slice languages 

Notes

Acknowledgements

I gratefully acknowledge financial support from the European Research Council, ERC grant agreement 339691, within the context of the project Feasibility, Logic and Randomness (FEALORA).

References

  1. 1.
    Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S., Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and programming. Sci. Comput. Program. 34(1), 1–54 (1999)CrossRefMATHGoogle Scholar
  2. 2.
    Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-state graph transformation systems. Inf. Comput. 206(7), 869–907 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: a software engineering perspective. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 431–433. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  4. 4.
    Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math. Syst. Theory 20(2–3), 83–127 (1987)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: Rewriting Techniques and Applications, vol. 12, pp. 101–116 (2012)Google Scholar
  6. 6.
    Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bruggink, H.S., König, B.: On the recognizability of arrow and graph languages. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 336–350. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  8. 8.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3), 241–265 (1996)MathSciNetMATHGoogle Scholar
  9. 9.
    de Oliveira Oliveira, M.: Hasse diagram generators and petri nets. Fundamenta Informaticae 105(3), 263–289 (2010)MathSciNetMATHGoogle Scholar
  10. 10.
    de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 445–457. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z-topologically orderable digraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 123–136. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225 (1992)Google Scholar
  13. 13.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006) Google Scholar
  14. 14.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: Switching and Automata Theory, pp. 167–180. IEEE Computer Society (1973)Google Scholar
  15. 15.
    Ehrig, H., Rosen, B.K.: Parallelism and concurrency of graph manipulations. Theoret. Comput. Sci. 11(3), 247–275 (1980)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of graphs. Acta Informatica 34, 773–803 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Poskitt, C.M., Plump, D.: Verifying total correctness of graph programs. Electron. Commun. EASST 61, 1–20 (2013)Google Scholar
  18. 18.
    Rensink, A.: Explicit state model checking for graph grammars. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 114–132. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  19. 19.
    Rozenberg, G., Ehrig, H.: Handbook of graph grammars and computing by graph transformation, vol. 1. World Scientific Publishing, Singapore (1999) Google Scholar
  20. 20.
    Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J. Algorithms 56(1), 1–24 (2005)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Thomas, W.: Finite-state recognizability of graph properties. Theorie des Automates et Applications 176, 147–159 (1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Mathematics - Academy of Sciences of the Czech RepublicPrahaCzech Republic

Personalised recommendations