Advertisement

Tool Support for Multi-amalgamated Triple Graph Grammars

  • Erhan Leblebici
  • Anthony Anjorin
  • Andy Schürr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9151)

Abstract

We present in this paper our tool support with eMoflon (www.emoflon.org) to incorporate the concept of multi-amalgamation into Triple Graph Grammars (TGGs). Multi-amalgamation provides a mechanism similar to a foreach loop for graph transformation rules by consolidating multiple applications of rules depending on how many rule applications are available at transformation time. TGGs are a well-known technique used to specify bidirectional model transformation, where consistency is described via triple rules that build up source, target, and correspondence models simultaneously. Combining both techniques in eMoflon yields a TGG implementation that can handle bidirectional consistency relations between source and target elements, whose number is unknown at design time and can only be determined at transformation time. Our goal with this extension is to tackle transformation scenarios that are currently beyond the capabilities of classical TGGs.

Keywords

Triple graph grammars Multi-amalgamation eMoflon 

References

  1. 1.
    Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. JCSS 34(2–3), 377–408 (1987)MathSciNetGoogle Scholar
  2. 2.
    Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and change propagating transformation language. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual modeling and analysis of EMF model transformations based on triple graph grammars. ECEASST 54, 1–14 (2012)Google Scholar
  4. 4.
    Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal Semantics and Implementation of Triple Graph Grammars. Technical report 37, Hasso-Plattner Institute (2010)Google Scholar
  5. 5.
    Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 346–361. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    van Gorp, P., Mazanek, S.: SHARE: a web portal for creating and sharing executable research papers. Procedia Comput. Sci. 4, 589–597 (2011)CrossRefGoogle Scholar
  7. 7.
    Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: an integrated framework for developing well-behaved bidirectional model transformations. In: Alexander, P., Pasarenau, C.S., Hosking, J.G. (eds.) ASE 2011, pp. 480–483 (2011)Google Scholar
  9. 9.
    Ikv++: Medini QVT. http://projects.ikv.de/qvt
  10. 10.
    Klassen, L., Wagner, R.: EMorF - A tool for model transformations. ECEASST 54, 1–6 (2012)Google Scholar
  11. 11.
    Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-Amalgamated Triple Graph Grammars. In: Parisi-Presicce, F., Westfechtel, B., (eds.) ICGT 2015, LNCS 9151, pp. 87–103. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 297–311. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    OMG: QVT Specification, V1.1 (2011). http://www.omg.org/spec/QVT/1.1/
  14. 14.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  15. 15.
    Taentzer, G.: Parallel and distributed graph transformation : Formal Description and Application to Communication-Based Systems. Ph.D. thesis (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Erhan Leblebici
    • 1
  • Anthony Anjorin
    • 1
  • Andy Schürr
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations