Finding Optimal Discretization Orders for Molecular Distance Geometry by Answer Set Programming

  • Douglas Gonçalves
  • Jacques Nicolas
  • Antonio Mucherino
  • Carlile Lavor
Part of the Studies in Computational Intelligence book series (SCI, volume 610)


The Molecular Distance Geometry Problem (MDGP) is the problem of finding the possible conformations of a molecule by exploiting available information about distances between some atom pairs. When particular assumptions are satisfied, the MDGP can be discretized, so that the search domain of the problem becomes a tree. This tree can be explored by using an interval Branch & Prune (iBP) algorithm. In this context, the order given to the atoms of the molecules plays an important role. In fact, the discretization assumptions are strongly dependent on the atomic ordering, which can also impact the computational cost of the iBP algorithm. In this work, we propose a new partial discretization order for protein backbones. This new atomic order optimizes a set of objectives, that aim at improving the iBP performances. The optimization of the objectives is performed by Answer Set Programming (ASP), a declarative programming language that allows to express our problem by a set of logical constraints. The comparison with previously proposed orders for protein backbones shows that this new discretization order makes iBP perform more efficiently.


Total Order Protein Backbone Interval Distance Discretization Order Reference Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are thankful to the Brittany Region (France) and to the Brazilian research agencies FAPESP, CNPq for financial support.


  1. 1.
    H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)CrossRefGoogle Scholar
  2. 2.
    G. Brewka, T. Eiter, M. Truszczyński, Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  3. 3.
    A. Cassioli, B. Bardiaux, G. Bouvier, A. Mucherino, R. Alves, L. Liberti, M. Nilges, C. Lavor, T.E. Malliavin, An algorithm to enumerate all possible protein conformations verifying a set of distance restraints. BMC Bioinform. (2015, to appear)Google Scholar
  4. 4.
    A. Cassioli, O. Gunluk, C. Lavor, L. Liberti, Discretization vertex orders in distance geometry. Discrete Appl. Math. (2015, to appear)Google Scholar
  5. 5.
    V. Costa, A. Mucherino, C. Lavor, A. Cassioli, L.M. Carvalho, N. Maculan, Discretization orders for protein side chains. J. Glob. Optim. 60(2), 333–349 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    G.M. Crippen, T.F. Havel, Distance Geometry and Molecular Conformation (Wiley, New York, 1988)zbMATHGoogle Scholar
  7. 7.
    T. Eiter, G. Ianni, T. Krennwallner, Answer set programming: a primer. Reason. Web 5689, 40–110 (2009)Google Scholar
  8. 8.
    M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Gelfond, Answer Sets, Handbook of Knowledge Representation, Chapter 7 (Elsevier, Amsterdam, 2007)Google Scholar
  10. 10.
    D.S. Gonçalves, A. Mucherino, Discretization orders and efficient computation of Cartesian coordinates for distance geometry. Optim. Lett. 8(7), 2111–2125 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    W. Gramacho, D. Gonçalves, A. Mucherino, N. Maculan, A new algorithm to finding discretizable orderings for distance geometry, in Proceedings of Distance Geometry and Applications (DGA13), Manaus, Amazonas, Brazil, pp. 149–152 (2013)Google Scholar
  12. 12.
    T.F. Havel, in Distance Geometry, Encyclopedia of nuclear magnetic resonance, ed. by D.M. Grant, R.K. Harris (Wiley, New York, 1995), pp. 1701–1710Google Scholar
  13. 13.
    C. Lavor, J. Lee, A. Lee-St.John, L. Liberti, A. Mucherino, M. Sviridenko, Discretization orders for distance geometry problems. Optim. Lett. 6(4), 783–796 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    C. Lavor, L. Liberti, N. Maculan, A. Mucherino, The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    C. Lavor, L. Liberti, A. Mucherino, The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56(3), 855–871 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    C. Lavor, A. Mucherino, L. Liberti, N. Maculan, On the computation of protein backbones by using artificial backbones of hydrogens. J. Glob. Optim. 50(2), 329–344 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    L. Liberti, C. Lavor, N. Maculan, A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L. Liberti, C. Lavor, N. Maculan, A. Mucherino, Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    T.E. Malliavin, A. Mucherino, M. Nilges, Distance geometry in structural biology: new perspectives, in Distance Geometry: Theory, Methods and Applications, ed. by A. Mucherino, C. Lavor, L. Liberti, N. Maculan (Springer, Berlin, 2013), pp. 329–350CrossRefGoogle Scholar
  20. 20.
    A. Mucherino, On the Identification of Discretization Orders for Distance Geometry with Intervals, Lecture Notes in Computer Science 8085, in Proceedings of Geometric Science of Information (GSI13), ed. by F. Nielsen, F. Barbaresco, Paris, France, 2013, pp. 231–238Google Scholar
  21. 21.
    A. Mucherino, A Pseudo de Bruijn Graph Representation for Discretization Orders for Distance Geometry, Lecture Notes in Computer Science 9043, Lecture Notes in Bioinformatics series, ed. by F. Ortuño, I. Rojas, Proceedings of the 3rd International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO15), Part I, Granada, Spain, 2015 pp. 514–523Google Scholar
  22. 22.
    A. Mucherino, C. Lavor, L. Liberti, The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    G.N. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of polypeptide chain conformations. J. Mol. Biol. 7, 95–99 (1963)CrossRefGoogle Scholar
  24. 24.
    J.B. Saxe, Embeddability of weighted graphs in \(k\)-space is strongly NP-hard, Proceedings of 17th Allerton Conference in Communications, Control and Computing, 480–489 (1979)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Douglas Gonçalves
    • 1
  • Jacques Nicolas
    • 2
  • Antonio Mucherino
    • 3
  • Carlile Lavor
    • 4
  1. 1.CCFMUniversidade Federal de Santa CatarinaFlorianopolisBrazil
  2. 2.INRIARennes Bretagne AtlantiqueRennesFrance
  3. 3.IRISAUniversity of Rennes 1RennesFrance
  4. 4.IMECC-UNICAMPCampinasBrazil

Personalised recommendations