Digital Archiving of Takigi Noh Based on Reflectance Analysis

  • Wataru WakitaEmail author
  • Shiro Tanaka
  • Kohei Furukawa
  • Kozaburo Hachimura
  • Hiromi T. Tanaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9179)


We propose a real-time bidirectional texture function (BTF) and image-based lighting (IBL) rendering of the Takigi Noh based on reflectance analysis. Firstly, we measured a sample of the Noh costume by omnidirectional anisotropic reflectance measurement system called Optical Gyro Measuring Machine (OGM), and we modeled the BTF of the Noh costume based on multi-illuminated High Dynamic Range (HDR) image analysis and modeled Noh stage in 3D based on archival records. Secondly, we captured motion data of Noh player, and modeled Noh player wearing a costume. To achieve the real-time rendering, we modeled the Noh costume by mass spring damper model. Finally, we modeled animated ambient map based on the Improving Noise to achieve the real-time dynamic lighting by fire of the Takigi, and we calculated the optical reflection by the IBL and deformation of the Noh costume.


Real-time rendering BTF Takigi noh Reflectance analysis Digital museum 


  1. 1.
    Styliani, S., Fotis, L., Kostas, K., Petros, P.: Virtual museums, a survey and some issues for consideration. J. Cult. Heritage 10(4), 520–528 (2009)CrossRefGoogle Scholar
  2. 2.
    Carrozzino, M., Bergamasco, M.: Beyond virtual museums: experiencing immersive virtual reality in real museums. J. Cult. Heritage 11(4), 452–458 (2010)CrossRefGoogle Scholar
  3. 3.
    Hirose, M., Tanikawa, T.: Overview of the digital museum project’. In: Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry, pp.11–16 (2010)Google Scholar
  4. 4.
  5. 5.
    Takeda, Y., Tanaka, H.T.: Multi-resolution anisotropic BTF modeling of gold brocade fabrics based on multi-illuminated HDR image analysis’. IEICE Trans. Inf. Syst. (D) J91-D(12), 2729–2738 (2008)Google Scholar
  6. 6.
    Nishiwaki, Y., Wakita, W., Tanaka, H.T.: Real-time anisotropic reflectance rendering of noh-costume with bonfire flickering effect. ITE Trans. Media Technol. Appl. 2(3), 217–224 (2014)CrossRefGoogle Scholar
  7. 7.
    Bartell, F.O., Dereniak, E.L., Wolfe, W.L.: The theory and measurement of bidirectional reflectance distribution function (brdf) and bidirectional transmittance distribution function (BTDF). In: SPIE 0257, Radiation Scattering in Optical Systems, pp. 154–160 (1981)Google Scholar
  8. 8.
    Ishida, A., Ishigo, E., Aiba, E., Nagata, N.: Lace curtain: rendering animation of woven cloth using BRDF/BTDF - estimating physical characteristic from subjective impression. In: ACM SIGGRAPH 2012 Posters, vol. 6 (2012)Google Scholar
  9. 9.
    Sadeghi, I., Bisker, O., Deken, J.D., Jensen, H.W.: A practical microcylinder appearance model for cloth rendering. ACM Trans. Graph. 32(2), 14:1–14:12 (2013)CrossRefGoogle Scholar
  10. 10.
    Zhao, S., Hasan, M., Ramamoorthi, R., Bala, K.: Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 32(4) (2013)Google Scholar
  11. 11.
    Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: ACM SIGGRAPH 1998, pp. 189–198 (1998)Google Scholar
  12. 12.
    Arvo, J.: Stratified sampling of 2-manifolds. In: ACM SIGGRAPH 2001 Course Notes, 29, August 2001Google Scholar
  13. 13.
    Debevec, P.: A median cut algorithm for light probe sampling. In: Proceedings of the ACM SIGGRAPH 2005 Posters, p. 66 (2005)Google Scholar
  14. 14.
    Agarwal, S., Ramamoorthi, R., Belongie, S., Wann Jensen, H.: Structured importance sampling of environment maps. ACM Trans. Graph. 22(3), 605–612 (2003)CrossRefGoogle Scholar
  15. 15.
    Ostromoukhov, V., Donohue, C., Jodoin, P.-M.: Fast Hierarchical Importance Sampling with Blue Noise Properties. ACM Trans. Graph. 23(3), 488–495 (2004)CrossRefGoogle Scholar
  16. 16.
    Lawrence, J., Rusinkiewicz, S., Ramamoorthi, R.: Adaptive numerical cumulative distribution functions for efficient importance sampling. In: Proceedings the Sixteenth Eurographics conference on Rendering Techniques, pp. 1–20 (2005)Google Scholar
  17. 17.
    Burke, D., Ghosh, A., Heidrich, W.: Bidirectional importance sampling for direct illumination. In: Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, pp. 147–156 (2005)Google Scholar
  18. 18.
    Clarberg, P., Jarosz, W., Moller, T.A., Jensen, H.W.: Wavelet importance sampling: efficiently evaluating products of complex functions. ACM Trans. Graph. 24(3), 1166–1175 (2005)CrossRefGoogle Scholar
  19. 19.
    Huang, H.-D., Chen, Y., Tong, X., Wang, W.-C.: Incremental wavelet importance sampling for direct illumination In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, pp. 149–152 (2007)Google Scholar
  20. 20.
    Jarosz, W., Carr, N.A., Jensen, H.W.: Importance sampling spherical harmonics. Comput. Graph. Forum 28(2), 577–586 (2009)CrossRefGoogle Scholar
  21. 21.
    Kautz, J., McCool, M.D.: Approximation of glossy reflection with prefiltered environment maps. In: Graphics Interface, pp. 119–126 (2000)Google Scholar
  22. 22.
    Ramamoorthi, R., Hanrahan, P.: An Efficient representation for irradiance environment maps. In: Proceedings of the ACM SIGGRAPH 2001, pp. 497–500 (2001)Google Scholar
  23. 23.
    Ramamoorthi, R., Hanrahan, P.: Frequency space environment map rendering. ACM Trans. Graph. 21(3), 517–526 (2002)CrossRefGoogle Scholar
  24. 24.
    Sloan, P.-P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. 21(3), 527–536 (2002)CrossRefGoogle Scholar
  25. 25.
    Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)CrossRefGoogle Scholar
  26. 26.
    Krivanek, J., Colbert, M.: Real-time shading with filtered importance sampling. Comput. Graph. Forum 27(4), 1147–1154 (2008)CrossRefGoogle Scholar
  27. 27.
    Nguyen, D.Q., Fedkiw, R., Jensen, H.W.: Physically based modeling and animation of fire. ACM Trans. Graph. 21(3), 721–728 (2002)CrossRefGoogle Scholar
  28. 28.
    Perlin, K.: Real-Time Shading. In: SIGGRAPH Course Notes, ch. 2, Noise Hardware (2001)Google Scholar
  29. 29.
    Ashikhmin, M., Premoze, S., Shirley, P.: A microfacet-based BRDF generator. In: ACM SIGGRAPH 2000, pp. 65–74 (2000)Google Scholar
  30. 30.
    Furukawa, K., Woong, C., Hachimura, K.: Digital restoration of the historical noh theater and its application. IPSJ Symp. Ser. 2005(10), 131–134 (2005)Google Scholar
  31. 31.
    Fuller, A.R., Krishnan, H., Mahrous, K., Hamann, B., Joy, K. I.: Real-time procedural volumetric fire. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 175–180 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wataru Wakita
    • 1
    Email author
  • Shiro Tanaka
    • 1
  • Kohei Furukawa
    • 2
  • Kozaburo Hachimura
    • 1
  • Hiromi T. Tanaka
    • 1
  1. 1.Department of Human and Computer Intelligence, College of Information Science and EngineeringRitsumeikan UniversityKusatsuJapan
  2. 2.Department of Image Arts and Sciences, College of Image Arts and SciencesRitsumeikan UniversityKyotoJapan

Personalised recommendations