Experimental Observation of Intrinsic Localized Modes in Germanium

  • Juan F. R. ArchillaEmail author
  • Sergio M. M. Coelho
  • F. Danie Auret
  • Cloud Nyamhere
  • Vladimir I. Dubinko
  • Vladimir Hizhnyakov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 221)


Deep level transient spectroscopy shows that defects created by alpha irradiation of germanium are annealed by low energy plasma ions up to a depth of several thousand lattice units. The plasma ions have energies of 2–8 eV and therefore can deliver energies of the order of a few eV to the germanium atoms. The most abundant defect is identified as the E-center, a complex of the dopant antimony and a vacancy with an annealing energy of 1.3 eV as determined by our measurements. The inductively coupled plasma has a very low density and a very low flux of ions. This implies that the ion impacts are almost isolated both in time and at the surface of the semiconductor. We conclude that energy of the order of an eV is able to travel a large distance in germanium in a localized way and is delivered to the defects effectively. The most likely candidates are vibrational nonlinear wave packets known as intrinsic localized modes, which exist for a limited range of energies. This property is coherent with the fact that more energetic ions are less efficient at producing the annealing effect.


Inductively Couple Plasma Capture Cross Section Deep Level Transient Spectroscopy Lattice Unit Diamond Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors were funded by MICINN, project FIS2008-04848; the South African National Research Foundation and the European Regional Development Fund, Centre of Excellence Mesosystems: Theory and Applications. JFRA and VD acknowledges the Physics Institute in Tartu for their hospitality.


  1. 1.
    Archilla, J.F.R., Coelho, S.M.M., Auret, F.D., Dubinko, V.I., Hizhnyakov, V.: Long range annealing of defects in germanium by low energy plasma ions. Physica D 297, 56–61 (2015)CrossRefGoogle Scholar
  2. 2.
    Ashcroft, N.W., Mermin, N.D.: Solid State physics. Saunders College Publishing, Philadelphia (1976)Google Scholar
  3. 3.
    Berger, L.I.: Semiconductor Materials. CRC Press, London (1996)Google Scholar
  4. 4.
    Coelho, S.M.M., Archilla, J.F.R., Auret, F.D., Nel, J.M.: The origin of defects induced in ultra-pure germanium by electron beam deposition. In: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 363–380. Springer, Berlin (2015)Google Scholar
  5. 5.
    Coelho, S.M.M., Auret, F.D., Janse van Rensburg, P.J., Nel, J.: Electrical characterization of defects introduced in n-Ge during electron beam deposition or exposure. J. Appl. Phys. 114(17), 173708 (2013)Google Scholar
  6. 6.
    Dimitrijev, S.: Irreversible event-based model for thermal emission of electrons from isolated traps. J. Appl. Phys. 105, 103706 (2009)Google Scholar
  7. 7.
    Dove, M.T.: Introduction to Lattice Dynamics. Cambridge University Press, Cambridge (2005)Google Scholar
  8. 8.
    Dubinko, V.I., Archilla, J.F.R., Dmitriev, S.V., Hizhnyakov, V.: Rate theory of acceleration of defect annealing driven by discrete breathers. In: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, pp. 381–398. Springer, Berlin (2015)Google Scholar
  9. 9.
    Dubinko, V.I., Dubinko, A.V.: Modification of reaction rates under irradiation of crystalline solids: contribution from intrinsic localized modes. Nucl. Instrum. Meth. B 303, 133–135 (2013)CrossRefGoogle Scholar
  10. 10.
    Dubinko, V.I., Selyshchev, P.A., Archilla, J.F.R.: Reaction-rate theory with account of the crystal anharmonicity. Phys. Rev. E 83, 041124 (2011)Google Scholar
  11. 11.
    Fage-Pedersen, J., Larsen, A.N.: Irradiation-induced defects in Ge studied by transient spectroscopies. Phys. Rev. B 62, 10116 (2000)Google Scholar
  12. 12.
    Holmström, E., Nordlund, K., Kuronen, A.: Threshold defect production in germanium determined by density functional theory molecular dynamics simulations. Phys. Scr. 81, 035601 (2010)Google Scholar
  13. 13.
    Karamitaheri, H., Neophytou, N., Kosina, H.: Ballistic phonon transport in ultra-thin silicon layers: effects of confinement and orientation. J. Appl. Phys. 113(20), 204305 (2013)Google Scholar
  14. 14.
    Kolkovsky, V., Petersen, M.C., Larsen, A.N.: Alpha-particle irradiation-induced defects in n-type germanium. Appl. Phys. Lett. 90(11), 112110 (2007)Google Scholar
  15. 15.
    Lacroix, D., Joulain, K., Lemonnier, D.: Monte carlo transient phonon transport in silicon and germanium at nanoscales. Phys. Rev. B 72, 064305 (2005)Google Scholar
  16. 16.
    Lang, D.V.: Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)CrossRefGoogle Scholar
  17. 17.
    Lide, D.R. (ed.): Handbook of Chemistry and Physics, 90th edn. CRC Press, Boca Raton (2010)Google Scholar
  18. 18.
    Markevich, V.P., Peakera, A.R., Litvinov, V.V., Emtsev, V.V., Murin, L.I.: Electronic properties of antimony-vacancy complex in Ge crystals. J. Appl. Phys. 95, 4078 (2004)CrossRefGoogle Scholar
  19. 19.
    Northrop, G.A., Wolfe, J.P.: Ballistic phonon imaging in germanium. Phys. Rev. B 22, 6196–6212 (1980)CrossRefGoogle Scholar
  20. 20.
    Nyamhere, C.: Characterization of process and radiation induced defects in Si and Ge using conventional deep level transient spectroscopy (DLTS) and laplace-DLTS. Ph.D. thesis, University of Pretoria. (2009). Accessed 14 March 2015
  21. 21.
    Roro, K., Janse van Rensburg, P., Auret, F., Coelho, S.M.M.: Effect of alpha-particle irradiation on the electrical properties of n-type Ge. Physica B 404(22), 4496–4498 (2009)Google Scholar
  22. 22.
    Schroder, D.K.: Semiconductor Material and Device Characterization, 3rd edn. John wiley, New Jersey (2006)Google Scholar
  23. 23.
    Tahini, H., Chroneos, A., Grimes, R.W., Schwingenschlo, U., Bracht, H.: Diffusion of E centers in germanium predicted using GGA+U approach. Appl. Phys. Lett. 99, 072112 (2011)Google Scholar
  24. 24.
    Voulgarakis, N.K., Hadjisavvas, S., Kelires, P.C., Tsironis, G.P.: Computational investigation of intrinsic localization in crystalline Si. Phys. Rev. B 69, 113201(1–4) (2004)Google Scholar
  25. 25.
    Wei, S., Chou, M.Y.: Phonon dispersion of silicon and germanium from first principles calculations. Phys. Rev. B 50, 2221 (1994)CrossRefGoogle Scholar
  26. 26.
    Wikipedia: Sine-gordon equation. (2015). Accessed 6 Apr 2015

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Juan F. R. Archilla
    • 1
    Email author
  • Sergio M. M. Coelho
    • 2
  • F. Danie Auret
    • 2
  • Cloud Nyamhere
    • 3
  • Vladimir I. Dubinko
    • 4
  • Vladimir Hizhnyakov
    • 5
  1. 1.Group of Nonlinear PhysicsDepartamento de Física Aplicada I, Universidad de SevillaSevillaSpain
  2. 2.Department of PhysicsUniversity of PretoriaPretoriaSouth Africa
  3. 3.Physics DepartmentMidlands State UniversityGweruZimbabwe
  4. 4.NSC Kharkov Institute of Physics and TechnologyKharkovUkraine
  5. 5.Institute of Physics, University of TartuTartuEstonia

Personalised recommendations