Stress Echo in Microvascular Disease

  • Leda Galiuto
  • Eugenio Picano


Coronary microcirculation is a fundamental portion of the coronary artery tree, as it contains most of the coronary blood volume and represents the main regulator of the coronary blood flow. Arterioles, capillaries, and venules originating from the major coronary artery branches and extending inside myocardium, with a diameter less than 300 μm, constitute the whole coronary microcirculation. While in the past only epicardial segments of coronary arteries were recognized to be potentially diseased by atherosclerotic process, in the last years growing evidences have suggested that some impairment may also affect the microcirculation. Interestingly, coronary microvascular impairment greatly contributes to pathophysiology of many cardiac diseases and to patient prognosis. As worth of note, different degrees of coronary microvascular impairment can be found both with and without epicardial obstructive atherosclerosis: indeed, recently, coronary microvascular abnormalities have been described in patients with normal coronary angiograms. Several conditions can be clustered together in the syndrome of microvascular disease (Table 30.1) [1]. In some of these conditions, the abnormalities of the microvasculature represent important markers of risk and may even determine myocardial ischemia, thus becoming important therapeutic targets [1].


Cardiovascular Magnetic Resonance Coronary Flow Reserve Wall Motion Abnormality Stress Echocardiography Normal Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840CrossRefPubMedGoogle Scholar
  2. 2.
    Camici PG (2007) Is the chest pain in cardiac syndrome X due to subendocardial ischaemia? Eur Heart J 28:1539–1540CrossRefPubMedGoogle Scholar
  3. 3.
    Kemp HG, Kronmal RA, Vlietstra RE et al (1986) Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol 7:479–483CrossRefPubMedGoogle Scholar
  4. 4.
    Opherk D, Schuler G, Wetterauer K et al (1989) Four-year follow-up study in patients with angina pectoris and normal coronary arteriograms (“syndrome X”). Circulation 80:1610–1666CrossRefPubMedGoogle Scholar
  5. 5.
    Arbogast R, Bourassa MG (1973) Myocardial function during atrial pacing in patients with angina pectoris and normal coronary arteriograms. Comparison with patients having significant coronary artery disease. Am J Cardiol 32:257–263CrossRefPubMedGoogle Scholar
  6. 6.
    Galiuto L, De Caterina AR, Porfidia A et al (2010) Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in Apical Ballooning or Takotsubo Syndrome. Eur Heart J 31:1319–1327CrossRefPubMedGoogle Scholar
  7. 7.
    Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Galiuto L, Lombardo A, Maseri A et al (2003) Temporal evolution and functional outcome of no reflow: sustained and spontaneously reversible patterns following successful coronary recanalisation. Heart 89:731–737PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Miller DD, Verani MS (1994) Current status of myocardial perfusion imaging after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 24:260–266CrossRefPubMedGoogle Scholar
  10. 10.
    Uren NG, Crake T, Lefroy DC et al (1994) Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med 33:222–227CrossRefGoogle Scholar
  11. 11.
    Uren NG, Marraccini P, Gistri R et al (1993) Altered coronary vasodilator reserve and metabolism in myocardium subtended by normal arteries in patients with coronary artery disease. J Am Coll Cardiol 22:650–658CrossRefPubMedGoogle Scholar
  12. 12.
    Neglia D, Parodi O, Gallopin M et al (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 92:796–804CrossRefPubMedGoogle Scholar
  13. 13.
    Camici P, Chiriatti G, Lorenzoni R et al (1991) Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 17:879–886CrossRefPubMedGoogle Scholar
  14. 14.
    Scheler S, Motz W, Strauer BE (1994) Mechanism of angina pectoris in patients with systemic hypertension and normal epicardial coronary arteries by arteriogram. Am J Cardiol 73:478–482CrossRefPubMedGoogle Scholar
  15. 15.
    Picano E, Palinkas A, Amyot R (2001) Diagnosis of myocardial ischemia in hypertensive patients. J Hypertens 19:1177–1183CrossRefPubMedGoogle Scholar
  16. 16.
    Kemp HG (1973) Left ventricular function in patients with the anginal syndrome and normal coronary arteriograms. Am J Cardiol 32:375CrossRefPubMedGoogle Scholar
  17. 17.
    Panting JR, Gatehouse PD, Yang GZ et al (2002) Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 346:1948–1953CrossRefPubMedGoogle Scholar
  18. 18.
    Lanza GA, Buffon A, Sestito A et al (2008) Relation between stress-induced myocardial perfusion defects on cardiovascular magnetic resonance and coronary microvascular dysfunction in patients with cardiac syndrome X. J Am Coll Cardiol 51:466–472CrossRefPubMedGoogle Scholar
  19. 19.
    Buchthal SD, den Hollander JA, Merz CN et al (2000) Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med 342:829–835CrossRefPubMedGoogle Scholar
  20. 20.
    Vermeltfoort IA, Bondarenko O, Raijmakers PG et al (2007) Is subendocardial ischaemia present in patients with chest pain and normal coronary angiograms? a cardiovascular MR study. Eur Heart J 28:1554–1558CrossRefPubMedGoogle Scholar
  21. 21.
    Maseri A, Crea F, Kaski JC et al (1991) Mechanisms of angina pectoris in syndrome X. J Am Coll Cardiol 17:499–506CrossRefPubMedGoogle Scholar
  22. 22.
    Epstein SE, Cannon RO (1986) Site of increased resistance to coronary flow in patients with angina pectoris and normal coronary arteries. J Am Coll Cardiol 8:459–461CrossRefPubMedGoogle Scholar
  23. 23.
    Ross J Jr, Hearse DJ (1994) Myocardial ischemia can we agree on a definition for the 21st century? Cardiovasc Res 28:1737–1744CrossRefGoogle Scholar
  24. 24.
    Galiuto L et al (2011) Chapter 7. Contrast echocardiography. In: The EAE textbook of echocardiography. Oxford University Press, Oxford, pp 99–115CrossRefGoogle Scholar
  25. 25.
    Lieberman AN, Weiss JL, Jugdutt BI et al (1981) Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 63:739–746CrossRefPubMedGoogle Scholar
  26. 26.
    Falsetti HL, Marcus ML, Kerber RE et al (1981) Quantification of myocardial ischemia and infarction by left ventricular imaging. Circulation 63:747–751CrossRefPubMedGoogle Scholar
  27. 27.
    Armstrong WF (1988) Echocardiography in coronary artery disease. Prog Cardiovasc Dis 30:267–288CrossRefPubMedGoogle Scholar
  28. 28.
    Carpeggiani C, L’Abbate A, Marzullo P (1989) Multiparametric approach to diagnosis of non-Q-wave acute myocardial infarction. Am J Cardiol 63:404–408CrossRefPubMedGoogle Scholar
  29. 29.
    Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction (2007) Universal definition of myocardial infarction. Circulation 116:2634–2653CrossRefPubMedGoogle Scholar
  30. 30.
    Abraham TP, Pinheiro AC (2008) Speckle-derived strain a better tool for quantification of stress echocardiography? J Am Coll Cardiol 51:158–160CrossRefPubMedGoogle Scholar
  31. 31.
    Reant P, Labrousse L, Lafitte S et al (2008) Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions. J Am Coll Cardiol 51:149–157CrossRefPubMedGoogle Scholar
  32. 32.
    Peteiro J, Monserrat L, Castro Beiras A (1999) Labile subaortic obstruction during exercise stress echocardiography. Am J Cardiol 84:1119–1123CrossRefPubMedGoogle Scholar
  33. 33.
    Lau K, Navarijo J, Stainback F (2001) Pseudo-false-positive exercise treadmill testing. Tex Heart Inst J 28:308–311PubMedCentralPubMedGoogle Scholar
  34. 34.
    Cotrim C, Almeida AG, Carrageta M (2007) Clinical significance of intraventricular gradient during effort in an adolescent karate player. Cardiovasc Ultrasound 5:39PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Maron B, Zipes D (2005) 36th Bethesda Conference. Introduction: eligibility recommendations for competitive athletes with cardiovascular abnormalities – general considerations. J Am Coll Cardiol 45:1318–1321CrossRefPubMedGoogle Scholar
  36. 36.
    Corrado D, Pelliccia A, Bjørnstad H, Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology et al (2005) Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Consensus statement of Study Group of Sport Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and Working Group of Myocardial and Pericardial Diseases of European Society of Cardiology. Eur Heart J 26:516–524CrossRefPubMedGoogle Scholar
  37. 37.
    Tousoulis D, Crake T, Lefroy DC et al (1993) Left ventricular hypercontractility and ST segment depression in patients with syndrome X. J Am Coll Cardiol 22:1607–1613CrossRefPubMedGoogle Scholar
  38. 38.
    Christiaens L, Duplantier C, Alla J et al (2001) Normal coronary angiogram and dobutamine-induced left ventricular obstruction during stress echocardiography: a higher hemodynamic responsiveness to dobutamine. Echocardiography 18:285–290CrossRefPubMedGoogle Scholar
  39. 39.
    Madaric J, Bartunek J, Verhamme K et al (2005) Hyperdynamic myocardial response to beta-adrenergic stimulation in patients with chest pain and normal coronary arteries. J Am Coll Cardiol 46:1270–1275CrossRefPubMedGoogle Scholar
  40. 40.
    Picano E, Lattanzi F, Masini M et al (1987) Usefulness of dipyridamole-echocardiography test for the diagnosis of syndrome X. Am J Cardiol 60:508CrossRefPubMedGoogle Scholar
  41. 41.
    Nihoyannopoulos P, Kaski JC, Crake T et al (1991) Absence of myocardial dysfunction during stress in patients with syndrome X. J Am Coll Cardiol 19:1463–1470CrossRefGoogle Scholar
  42. 42.
    Lanzarini L, Previtali M, Fetiveau R et al (1994) Results of dobutamine stress echocardiography in patients with syndrome X. Int J Card Imaging 10:145–148CrossRefPubMedGoogle Scholar
  43. 43.
    Panza JA, Laurienzo JM, Curiel RV et al (1997) Investigation of the mechanism of chest pain in patients with angiographically normal coronary arteries using transesophageal dobutamine stress echocardiography. J Am Coll Cardiol 29:293–301CrossRefPubMedGoogle Scholar
  44. 44.
    Dimitrow PP, Rigo F (2005) The noninvasive documentation of coronary microcirculatory impairment role of transthoracic echocardiography. Cardiovasc Ultrasound 3:18PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Galiuto L, Sestito A, Barchetta S et al (2007) Noninvasive evaluation of flow reserve in the left anterior descending coronary artery in patients with cardiac syndrome X. Am J Cardiol 99:1378–1383CrossRefPubMedGoogle Scholar
  46. 46.
    Meimoun P, Malaquin D, Sayah S et al (2008) The coronary flow reserve is transiently impaired in takotsubo cardiomyopathy: a prospective study using serial Doppler transthoracic echocardiography. J Am Soc Echocardiogr 21:72–77CrossRefPubMedGoogle Scholar
  47. 47.
    Rigo F, Sicari R, Citro R et al (2009) Diffuse, marked, reversible impairment in coronary microcirculation in stress cardiomyopathy: a Doppler transthoracic echo study. Ann Med 4:462–470CrossRefGoogle Scholar
  48. 48.
    Meimoun P, Malaquin D, Benali T et al (2009) Transient impairment of coronary flow reserve in takotsubo cardiomyopathy is related to left ventricular systolic parameters. Eur J Echocardiogr 10:265–270CrossRefPubMedGoogle Scholar
  49. 49.
    Silberbauer J, Hong P, Lloyd GW (2008) Takotsubo cardiomyopathy (left ventricular ballooning syndrome) induced during dobutamine stress echocardiography. Eur J Echocardiogr 9:136–138PubMedGoogle Scholar
  50. 50.
    Margey R, Diamond P, McCann H, Sugrue D (2009) Dobutamine stress echo-induced apical ballooning (Takotsubo) syndrome. Eur J Echocardiogr 10:395–399CrossRefPubMedGoogle Scholar
  51. 51.
    Litvinov IV, Kotowycz MA, Wassmann S (2009) Iatrogenic epinephrine-induced reverse Takotsubo cardiomyopathy: direct evidence supporting the role of catecholamines in the pathophysiology of the “broken heart syndrome”. Clin Res Cardiol 98:457–462CrossRefPubMedGoogle Scholar
  52. 52.
    Abraham J, Mudd JO, Kapur N, Klein K, Champion HC, Wittstein IS (2009) Stress cardiomyopathy after intravenous administration of catecholamines and beta-receptor agonists. J Am Coll Cardiol 53:1320–1325CrossRefPubMedGoogle Scholar
  53. 53.
    Maseri A (1986) Role of coronary spasm in symptomatic and silent myocardial ischemia. J Am Coll Cardiol 9:249–262CrossRefGoogle Scholar
  54. 54.
    Papanicolaou MN, Califf RM, Hlatky MA et al (1986) Prognostic implications of angiographically normal and insignificantly narrowed coronary arteries. Am J Cardiol 58:1181–1187CrossRefPubMedGoogle Scholar
  55. 55.
    Lichtlen PR, Bargheer K, Wenzlaff P (1995) Long-term prognosis of patients with anginalike chest pain and normal coronary angiographic findings. J Am Coll Cardiol 25:1013–1018CrossRefPubMedGoogle Scholar
  56. 56.
    Sicari R, Palinkas A, Pasanisi E et al (2005) Long-term survival of patients with chest pain syndrome and angiographically normal or near-normal coronary arteries: the additional prognostic value of dipyridamole-echocardiography test. Eur Heart J 26:2136–2141CrossRefPubMedGoogle Scholar
  57. 57.
    Sicari R, Rigo F, Cortigiani L et al (2009) Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. Am J Cardiol 103:626–631CrossRefPubMedGoogle Scholar
  58. 58.
    Bugiardini R, Merz NB (2005) Angina with “normal” coronary arteries – a changing philosophy. JAMA 293:477–484CrossRefPubMedGoogle Scholar
  59. 59.
    National Heart, Lung, and Blood Institute, von Mering GO, Arant CB, Wessel TR et al (2004) Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: results from the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109:722–725CrossRefGoogle Scholar
  60. 60.
    Prescott E, Abildstrøm SZ, Aziz A et al (2014) Improving diagnosis and treatment of women with angina pectoris and microvascular disease: the iPOWER study design and rationale. Am Heart J 167:452–458CrossRefPubMedGoogle Scholar
  61. 61.
    Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Echocardiography Lab, Cardiology DepartmentUniversità CattolicaRomeItaly
  2. 2.CNR Pisa, Ist. Fisiologia ClinicaPisaItaly

Personalised recommendations