Robust Marker-Based Tracking for Measuring Crowd Dynamics

  • Wolfgang Mehner
  • Maik Boltes
  • Markus Mathias
  • Bastian Leibe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9163)


We present a system to conduct laboratory experiments with thousands of pedestrians. Each participant is equipped with an individual marker to enable us to perform precise tracking and identification. We propose a novel rotation invariant marker design which guarantees a minimal Hamming distance between all used codes. This increases the robustness of pedestrian identification. We present an algorithm to detect these markers, and to track them through a camera network. With our system we are able to capture the movement of the participants in great detail, resulting in precise trajectories for thousands of pedestrians. The acquired data is of great interest in the field of pedestrian dynamics. It can also potentially help to improve multi-target tracking approaches, by allowing better insights into the behaviour of crowds.


Vision system application Multi-target tracking ID-markers 



This study was performed within the project BaSiGo (Bausteine für die Sicherheit von Großveranstaltungen, Safety and Security Modules for Large Public Events) funded by the Federal Ministry of Education and Research (BMBF) Program on “Research for Civil Security – Protecting and Saving Human Life”. Markus Mathias and Bastian Leibe are funded by the ERC Starting Grant Project CV-SUPER (ERC-2012-StG-307432).


  1. 1.
    Qr code - official website.
  2. 2.
    Boltes, M., Zhang, J., Seyfried, A., Steffen, B.: T-junction: experiments, trajectory collection, and analysis. In: ICCV Workshops, pp. 158–165 (2011)Google Scholar
  3. 3.
    Boltes, M.: Automatische Erfassung präziser Trajektorien in Personenströmen hoher Dichte. Ph.D. thesis, Forschungszentrum Jülich (2015)Google Scholar
  4. 4.
    Bukáček, M., Hrabák, P., Krbálek, M.: Experimental study of phase transition in pedestrian flow. Transp. Res. Procedia 2, 105–113 (2014)CrossRefGoogle Scholar
  5. 5.
    Chraibi, M., Boltes, M., Schadschneider, A., Seyfried, A. (eds.): Traffic and Granular Flow ’13. Springer, Switzerland (2015) Google Scholar
  6. 6.
    Clark Jr., G.C., Cain, J.B.: Error-Correction Coding for Digital Communications. Springer, New York (1981)CrossRefGoogle Scholar
  7. 7.
    Daamen, W., Hoogendoorn, S.: Capacity of doors during evacuation conditions. Procedia Eng. 3, 53–66 (2010)CrossRefGoogle Scholar
  8. 8.
    Daniel, W., Dieter, S.: Artoolkitplus for pose tracking on mobile devices. In: Proceedings of 12th Computer Vision Winter Workshop (2007)Google Scholar
  9. 9.
    Fiala, M.: ARTag, an improved marker system based on artoolkit. Technical report, Institute for Information Technology, National Research Council Canada (2004)Google Scholar
  10. 10.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003) Google Scholar
  11. 11.
    Jelić, A., Appert-Rolland, C., Lemercier, S., Pettré, J.: Properties of pedestrians walking in line: fundamental diagrams. Phys. Rev. E 85(3), 036111 (2012)CrossRefGoogle Scholar
  12. 12.
    Keni, B., Rainer, S.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008 (2008)Google Scholar
  13. 13.
    Lemercier, S., Moreau, M., Moussaïd, M., Theraulaz, G., Donikian, S., Pettré, J.: Reconstructing motion capture data for human crowd study. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 365–376. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI, pp. 674–679 (1981)Google Scholar
  15. 15.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Schadschneider, A., Klingsch, W., Klüpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, pp. 3142–3176. Springer, New York (2009) CrossRefGoogle Scholar
  17. 17.
    Secoando, F., Plagemann, C., Jiménez, A.R., Burgard, W.: Improving rfid-based indoor positioning accuracy using gaussian processes. In: 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (2010)Google Scholar
  18. 18.
    Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593–600 (1994)Google Scholar
  19. 19.
    Stuart, D., Christensen, K., Chen, A., Kim, Y., Chen, Y.: Utilizing augmented reality technology for crowd pedestrian analysis involving individuals with disabilities. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2013)Google Scholar
  20. 20.
    Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.): Pedestrian and Evacuation Dynamics 2012. Springer, Switzerland (2014) Google Scholar
  21. 21.
    Zhan, B., Monekosso, D.N., Remagnino, P., Velastin, S.A., Xu, L.Q.: Crowd analysis: a survey. Mach. Vis. Appl. 19(5–6), 345–357 (2008)zbMATHCrossRefGoogle Scholar
  22. 22.
    Zhang, Z.: A flexible new technique for camera calibration. PAMI 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wolfgang Mehner
    • 1
  • Maik Boltes
    • 2
  • Markus Mathias
    • 1
  • Bastian Leibe
    • 1
  1. 1.Visual Computing Institute, Computer Vision GroupRWTH Aachen UniversityAachenGermany
  2. 2.Forschungszentrum Jülich GmbHJülichGermany

Personalised recommendations