Object Detection Using a Combination of Multiple 3D Feature Descriptors

  • Lilita KiforenkoEmail author
  • Anders Glent Buch
  • Norbert Krüger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9163)


This paper presents an approach for object pose estimation using a combination of multiple feature descriptors. We propose to use a combination of three feature descriptors, capturing both surface and edge information. Those descriptors individually perform well for different object classes. We use scenes from an established RGB-D dataset and our own recorded scenes to justify the claim that by combining multiple features, we in general achieve better performance. We present quantitative results for descriptor matching and object detection for both datasets.


Object detection Pose estimation Feature combination 



The research leading to these results has received funding from the European Communitys Seventh Framework Programme FP7/2007-2013 (Programme and Theme: ICT-2011.2.1, Cognitive Systems and Robotics) under grant agreement no. 600578, ACAT and by Danish Agency for Science, Technology and Innovation, project CARMEN.


  1. 1.
    Aldoma, A., Marton, Z.C., Tombari, F., Wohlkinger, W., Potthast, C., Zeisl, B., Rusu, R., Gedikli, S., Vincze, M.: Tutorial: point cloud library: three-dimensional object recognition and 6 dof pose estimation. IEEE Robot. Autom. Mag. 19(3), 80–91 (2012)CrossRefGoogle Scholar
  2. 2.
    Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evaluation. In: Workshop on Color-Depth Camera Fusion in Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2012)Google Scholar
  3. 3.
    Besl, P., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)CrossRefGoogle Scholar
  4. 4.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  5. 5.
    Choi, C., Trevor, A.J., Christensen, H.I.: RGB-D edge detection and edge-based registration. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1568–1575. IEEE (2013)Google Scholar
  6. 6.
    Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient response maps for real-time detection of textureless objects. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 876–888 (2012)CrossRefGoogle Scholar
  7. 7.
    Jeong, W., Lee, S., Kim, Y.: Statistical feature selection model for robust 3D object recognition. In: 2011 15th International Conference on Advanced Robotics (ICAR), pp. 402–408, June 2011Google Scholar
  8. 8.
    Jørgensen, T.B., Buch, A.G., Kraft, D.: Geometric edge description and classification in point cloud data with application to 3D object recognition. In: International Conference on Computer Vision Theory and Applications (VISAPP) (2015)Google Scholar
  9. 9.
    Kiforenko, L., Buch, A.G., Bodenhagen, L., Kruger, N.: Object detection using categorised 3D edges. In: SPIE, vol. 9445 (2015)Google Scholar
  10. 10.
    Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view RGB-D object dataset. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824 (2011)Google Scholar
  11. 11.
    Lv, T., Liu, G., bin Huang, S., Wang, Z.X.: Selective feature combination and automatic shape categorization of 3D models. In: Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, FSKD 2009, vol. 5, pp. 447–451, August 2009Google Scholar
  12. 12.
    Ohbuchi, R., Furuya, T.: Distance metric learning and feature combination for shape-based 3D model retrieval. In: Proceedings of the ACM Workshop on 3D Object Retrieval, 3DOR 2010, pp. 63–68. ACM, New York (2010)Google Scholar
  13. 13.
    Rusu, R.B., Cousins, S.: 3D is here: point cloud library (pcl). In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1–4 (2011)Google Scholar
  14. 14.
    Salti, S., Tombari, F., Di Stefano, L.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)CrossRefGoogle Scholar
  15. 15.
    Sotelo, M., Parra, I., Fernandez, D., Naranjo, E.: Pedestrian detection using svm and multi-feature combination. In: Intelligent Transportation Systems Conference, 2006, ITSC 2006, pp. 103–108. IEEE, September 2006Google Scholar
  16. 16.
    Tombari, F., Salti, S., Di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 809–812, September 2011Google Scholar
  17. 17.
    Tombari, F., Franchi, A., Di Stefano, L.: Bold features to detect texture-less objects. In: The IEEE International Conference on Computer Vision (ICCV), December 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lilita Kiforenko
    • 1
    Email author
  • Anders Glent Buch
    • 1
  • Norbert Krüger
    • 1
  1. 1.The Mærsk Mc-Kinney Møller InstituteUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations