3D Object Pose Refinement in Range Images

  • Xenophon Zabulis
  • Manolis Lourakis
  • Panagiotis Koutlemanis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9163)

Abstract

Estimating the pose of objects from range data is a problem of considerable practical importance for many vision applications. This paper presents an approach for accurate and efficient 3D pose estimation from 2.5D range images. Initialized with an approximate pose estimate, the proposed approach refines it so that it accurately accounts for an acquired range image. This is achieved by using a hypothesize-and-test scheme that combines Particle Swarm Optimization (PSO) and graphics-based rendering to minimize a cost function of object pose that quantifies the misalignment between the acquired and a hypothesized, rendered range image. Extensive experimental results demonstrate the superior performance of the approach compared to the Iterative Closest Point (ICP) algorithm that is commonly used for pose refinement.

Keywords

Particle Swarm Optimization Depth Image Range Image Iterative Close Point Iterative Close Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has received funding from the EC FP7 programme under grant no. 270138 DARWIN and by FORTH-ICS internal RTD Programme “Ambient Intelligence and Smart Environments”.

References

  1. 1.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. PAMI 14(2), 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. Comput. Graph. Forum 32(5), 113–123 (2013)CrossRefGoogle Scholar
  3. 3.
    Cao, T.-T., Tang, K., Mohamed, A., Tan, T.-S.: Parallel banding algorithm to compute exact distance transform with the GPU. In: I3D, pp. 83–90 (2010)Google Scholar
  4. 4.
    Choi, C., Christensen, H.: 3D pose estimation of daily objects using an RGB-D camera. In: IROS, pp. 3342–3349 (2012)Google Scholar
  5. 5.
    Collet, A., Martinez, M., Srinivasa, S.: The MOPED framework: object recognition and pose estimation for manipulation. Int. J. Robot. Res. 30(10), 1284–1306 (2011)CrossRefGoogle Scholar
  6. 6.
    Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: CVPR, pp. 998–1005, June 2010Google Scholar
  7. 7.
    Felzenszwalb, P., Huttenlocher, D.: Distance transforms of sampled functions. Theory Comput. 8(19), 415–428 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fischer, J., Bormann, R., Arbeiter, G., Verl, A.: A feature descriptor for texture-less object representation using 2D and 3D cues from RGB-D data. In: ICRA, pp. 2112–2117 (2013)Google Scholar
  9. 9.
    Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., Navab, N.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Optical Soc. Am. A 4(4), 629–642 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. PAMI 21(5), 433–449 (1999)CrossRefGoogle Scholar
  13. 13.
    Khoshelham, K., Elberink, S.: Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2), 1437–1454 (2012)CrossRefGoogle Scholar
  14. 14.
    Lourakis, M., Zabulis, X.: Model-based pose estimation for rigid objects. In: Chen, M., Leibe, B., Neumann, B. (eds.) ICVS 2013. LNCS, vol. 7963, pp. 83–92. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Mian, A., Bennamoun, M., Owens, R.: Automatic correspondence for 3D modeling: an extensive review. Int. J. Shape Model. 11(02), 253–291 (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Park, I., Germann, M., Breitenstein, M., Pfister, H.: Fast and automatic object pose estimation for range images on the GPU. Mach. Vis. Appl. 21(5), 749–766 (2010)CrossRefGoogle Scholar
  17. 17.
    Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  18. 18.
    Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3DIM, pp. 145–152 (2001)Google Scholar
  19. 19.
    Rusu, R., Blodow, N., Beetz, M.: Fast point feature histograms (FPFH) for 3D registration. In: ICRA, pp. 3212–3217 (2009)Google Scholar
  20. 20.
    Sobol, I.: Distribution of points in a cube and approximate evaluation of integrals. U.S.S.R. Comput. Maths. Math. Phys. 7, 86–112 (1967)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sun, M., Bradski, G., Xu, B.-X., Savarese, S.: Depth-encoded hough voting for joint object detection and shape recovery. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 658–671. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  22. 22.
    Tejani, A., Tang, D., Kouskouridas, R., Kim, T.-K.: Latent-class hough forests for 3D object detection and pose estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 462–477. Springer, Heidelberg (2014) Google Scholar
  23. 23.
    Tombari, F., Salti, S., di Stefano, L.: A combined texture-shape descriptor for enhanced 3D feature matching. In: ICIP, pp. 809–812 (2011)Google Scholar
  24. 24.
    Wang, W., Chen, L., Liu, Z., Khnlenz, K., Burschka, D.: Textured/textureless object recognition and pose estimation using RGB-D image. J. Real-Time Image Process. 1–16 (2013)Google Scholar
  25. 25.
    Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm optimization for visual tracking. In: CVPR, pp. 1–8 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xenophon Zabulis
    • 1
  • Manolis Lourakis
    • 1
  • Panagiotis Koutlemanis
    • 1
  1. 1.Institute of Computer ScienceFoundation for Research and Technology - HellasHeraklionGreece

Personalised recommendations