Advertisement

How Good Is Kernel Descriptor on Depth Motion Map for Action Recognition

  • Thanh-Hai TranEmail author
  • Van-Toi Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9163)

Abstract

This paper presents a new method for action recognition using depth data. Each depth sequence is represented by depth motion maps from three projection views (front, side and top) to exploit different aspects of the motion. However, different from state of the art works extracting local binary pattern or histogram of oriented gradients, we describe an action based on gradient kernel descriptor. The proposed method is evaluated on two benchmark datasets (MSRAction3D and MSRGestures3D) and obtains very competitive performances with the best state of the arts methods. Our best recognition rate is 91.57 % on MSRAction3D and 100 % on MSRGestures3D dataset whereas [1] achieved 93.77 % and 94.60 % respectively.

Keywords

Action recognition Depth motion map Kernel descriptor 

Notes

Acknowlegment

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number FWO.102.2013.08.

References

  1. 1.
    Chen, C., Jafari, R., Kehtarnavaz, N.: Action recognition from depth sequences using depth motion maps-based local binary patterns. In: WACV, pp. 1092–1099 (2015)Google Scholar
  2. 2.
    Shotton, J., Fitzgibbon., A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from a single depth image. In: PAMI (2012)Google Scholar
  3. 3.
    Ye, M., Zhang, Q., Wang, L., Zhu, J., Yang, R., Gall, J.: A survey on human motion analysis from depth data. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. LNCS, vol. 8200, pp. 149–187. Springer, Heidelberg (2013) Google Scholar
  4. 4.
    Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based histograms of oriented gradients. In: ACM Multimedia (MM), pp. 1057–1060 (2012)Google Scholar
  5. 5.
    Bo, L., Ren, X., Fox, D.: Kernel descriptors for visual recognition. In: Advances in Neural Information Processing Systems, pp. 244–252 (2010)Google Scholar
  6. 6.
    Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1473–1488 (2008)CrossRefGoogle Scholar
  7. 7.
    Xia, L., Aggarwal, J.K.: Spatio-temporal depth cuboid similarity feature for activity recognition using depth camera. In: CVPR, pp. 2834–2841 (2013)Google Scholar
  8. 8.
    Omar, O., Liu, Z.: HON4D: histogram of oriented 4D normals for: activity recognition from depth sequences. In: CVPR, pp. 716–723 (2013)Google Scholar
  9. 9.
    Yang, X., Tian, Y.: Super normal vector for activity recognition using depth sequences. In: CVPR, pp. 804–811 (2014)Google Scholar
  10. 10.
    Li, W., Zhang, Z., Liu, Y.: Action recognition based on a bag of 3D points. In: CVPR Workshop, pp. 9–14 (2010)Google Scholar
  11. 11.
    Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture recognition with a depth sensor. In: EUSIPCO, pp. 1975–1979 (2012)Google Scholar
  12. 12.
    Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: CVPR (2012)Google Scholar
  13. 13.
    Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3D action recognition with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 872–885. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.International Research Institute MICA, HUST-CNRS/UMI-2954-INP GrenobleHanoiVietnam
  2. 2.L3i LaboratoryUniversity of La RochelleLa RochelleFrance
  3. 3.University of Information and Communication Technology Under Thai Nguyen UniversityThai NguyenVietnam

Personalised recommendations