Global Isomorphism Approach: Main Results and Perspectives

  • Leonid Bulavin
  • Vadim Cheplak
  • Vladimir L. Kulinskii
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 171)

Abstract

In this chapter we review main results of the Global Isomorphism approach and discuss possible routes for further studies. The approach is based on the minimal geometric reformulation of the (approximate) linearities of the binodal diameter and the unit compressibility line (Batschinsky law). Explicit relations between the thermodynamic functions of the Lattice Gas model and the fluid within the framework of the approach proposed earlier in [V.L. Kulinskii, J. Phys. Chem. B 114 2852 (2010)] are discussed. On this basis we show that the critical compressibility factor of molecular fluids can be related with that of the lattice gas. We show how the associative properties of a fluid can be taken into account via the structure of the isomorphic lattice. Also we derive the relation between the entropies of a fluid and its lattice analog. The entropy of the fluid is decomposed into symmetrical and asymmetrical parts. We demonstrate that such decomposition is consistent with the basic Clausius-Clapeyron relation and the binodal asymmetry represented by the law of the rectilinear diameter.

References

  1. 1.
    J.D. van der Waals, De constinuitet van den gas—en floeistoftoestand. Ph.D. thesis, Leiden University, Leiden (1873)Google Scholar
  2. 2.
    L.P. Filippov, Metody Rascheta i Prognozirovaniya Svoistv Veshchestv (Methods for Calculating and Predicting the Properties of Substances) (Moscow State University, Moscow, 1988)Google Scholar
  3. 3.
    I. Prigogine, The Molecular Theory of Solutions (Interscience Publihers, NY, 1957)MATHGoogle Scholar
  4. 4.
    A.Z. Patashinskii, V.L. Pokrovsky, Fluctuation Theory of Critical Phenomena (Pergamon, Oxford, 1979)Google Scholar
  5. 5.
    L. Cailletet, E. Mathias, Seances Acad. Sci. 102, 1202 (1886). doi:http://dx.doi.org/10.1051/jphystap:018860050054900
  6. 6.
    E.A. Guggenheim, J. Chem. Phys. 13(7), 253 (1945). doi:10.1063/1.1724033. http://link.aip.org/link/?JCP/13/253/1
  7. 7.
  8. 8.
    D. Ben-Amotz, D.R. Herschbach, Isr. J. Chem. 30, 59 (1990). doi:10.1002/ijch.199000007. http://onlinelibrary.wiley.com/doi/10.1002/ijch.199000007/abstract
  9. 9.
    J.P. Hansen, I.R. Mcdonald, Theory of Simple Liquids, 3rd edn. (Academic Press, San Diego, 2006)Google Scholar
  10. 10.
    E.M. Apfelbaum, V.S. Vorob’ev, G.A. Martynov, J. Phys. Chem. B 110, 8474 (2006). doi:10.1021/jp057327c CrossRefGoogle Scholar
  11. 11.
    E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 113(0), 3521 (2009). doi:10.1021/jp808817p. http://pubs.acs.org/doi/abs/10.1021/jp808817p
  12. 12.
    E. Apfelbaum, V. Vorob’ev, Chem. Phys. Lett. 591, 212–215 (2013). doi:http://dx.doi.org/10.1016/j.cplett.2013.11.041. http://www.sciencedirect.com/science/article/pii/S0009261413014541
  13. 13.
    E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 117(0), 7750–7755 (2013). doi:10.1021/jp404146h. http://pubs.acs.org/doi/abs/10.1021/jp404146h
  14. 14.
    V.L. Kulinskii, J. Phys. Chem. B 114(8), 2852 (2010). doi:10.1021/jp911897k. http://pubs.acs.org/doi/full/10.1021/jp911897k
  15. 15.
    V.L. Kulinskii, J. Chem. Phys. 133(3), 034121 (2010). doi:10.1063/1.3457943. http://link.aip.org/link/?JCP/133/034121/1
  16. 16.
    L.A. Bulavin, V.L. Kulinskii, J. Chem. Phys. 133(13), 134101 (2010). doi:10.1063/1.3496468. http://link.aip.org/link/JCPSA6/v133/i13/p134101/s1
  17. 17.
    V.L. Kulinskii, J. Chem. Phys. 133(13), 131102 (2010). doi:10.1063/1.3499857. http://link.aip.org/link/?JCP/133/131102/1
  18. 18.
  19. 19.
    E.M. Apfelbaum, V.S. Vorob’ev, J. Phys. Chem. B 114(30), 9820 (2010). doi:10.1021/jp1022899. http://dx.doi.org/10.1021/jp1022899
  20. 20.
    Q. Wei, D.R. Herschbach, J. Phys. Chem. C 117, 22438 (2013). doi:10.1021/jp403307g. http://pubs.acs.org/doi/abs/10.1021/jp403307g
  21. 21.
  22. 22.
    V.L. Kulinskii, J. Chem. Phys. 139, 184119 (2013). http://scitation.aip.org/content/aip/journal/jcp/139/18/10.1063/1.4829837
  23. 23.
    K. Wilson, J. Kogut, The renormalization group and the epsilon expansion. Phys. Lett. (North-Holland, 1974). http://books.google.com.ua/books?id=hanYHAAACAAJ
  24. 24.
    S. Ma, Modern theory of critical phenomena (W.A. Benlamin Inc, London, 1976)Google Scholar
  25. 25.
    M. Fisher, Rev. Mod. Phys. 70, 653 (1998)CrossRefADSMATHGoogle Scholar
  26. 26.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Part 1), 3rd edn. (Pergamon Press, Oxford, 1980)Google Scholar
  27. 27.
    E.M. Apfelbaum, V.S. Vorob’ev, J. Chem. Phys. 130(21), 214111 (2009). doi:10.1063/1.3151982. http://link.aip.org/link/?JCP/130/214111/1
  28. 28.
    H. Okumura, F. Yonezawa, J. Chem. Phys. 113(20), 9162 (2000). doi:10.1063/1.1320828. http://link.aip.org/link/?JCP/113/9162/1
  29. 29.
    P. Orea, Y. Reyes-Mercado, Y. Duda, Phys. Lett. A 372(47), 7024 (2008). doi:http://dx.doi.org/10.1016/j.physleta.2008.10.047. http://www.sciencedirect.com/science/article/pii/S0375960108015417
  30. 30.
    M.H.J. Hagen, D. Frenkel, J. Chem. Phys. 101(5), 4093 (1994). doi:10.1063/1.467526. http://link.aip.org/link/?JCP/101/4093/1
  31. 31.
    C.F. Tejero, A. Daanoun, H.N.W. Lekkerkerker, M. Baus, Phys. Rev. Lett. 73(5), 752 (1994). doi:10.1103/PhysRevLett.73.752 CrossRefADSGoogle Scholar
  32. 32.
    M. Hasegawa, K. Ohno, J. Phys.: Condens. Matter 9(16), 3361 (1997). http://stacks.iop.org/0953-8984/9/i=16/a=008
  33. 33.
    M. Hasegawa, J. Chem. Phys. 108(1), 208 (1998). doi:10.1063/1.475392. http://link.aip.org/link/?JCP/108/208/1
  34. 34.
    P.J. Camp, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 67(1), 011503 (2003). doi:10.1103/PhysRevE.67.011503 CrossRefADSGoogle Scholar
  35. 35.
    E.M. Apfelbaum, V.S. Vorob’ev, G.A. Martynov, J. Phys. Chem. A 112, 6042 (2008). doi:10.1021/jp802999z CrossRefGoogle Scholar
  36. 36.
    O. Rice, Statistical Mechanics, Thermodynamic and Kinetics (W.H. Freeman and Co, San Francisco, 1967)Google Scholar
  37. 37.
    L.A. Bulavin, V.L. Kulinskii, J. Phys. Chem. B 115(19), 6061 (2011). doi:10.1021/jp201872f. http://pubs.acs.org/doi/abs/10.1021/jp201872f
  38. 38.
    B. Smit, D. Frenkel, J. Chem. Phys. 94(8), 5663 (1991). doi:10.1063/1.460477. http://link.aip.org/link/?JCP/94/5663/1
  39. 39.
    J.J. Potoff, A.Z. Panagiotopoulos, J. Chem. Phys. 109(24), 10914 (1998). doi:10.1063/1.477787. http://link.aip.org/link/?JCP/109/10914/1
  40. 40.
    M. Hloucha, S.I. Sandler, J. Chem. Phys. 111(17), 8043 (1999). doi:10.1063/1.480138. http://link.aip.org/link/?JCP/111/8043/1
  41. 41.
    V.L. Kulinskii, J. Chem. Phys. 134(14), 144111 (2011). doi:10.1063/1.3578469. http://link.aip.org/link/?JCP/134/144111/1
  42. 42.
    C. Domb, M.F. Sykes, Proc. R. Soc. Lond. A. Math. Phys. Sci. 235(1201), 247 (1956). doi:10.1098/rspa.1956.0080. http://rspa.royalsocietypublishing.org/content/235/1201/247.abstract
  43. 43.
    E. Montroll, in Statistical Physics, Phase Transitions and Superfluidity (Brandeis University Summer Institute in Theoretical Physics (1966)), vol. 2, ed. by M. Chretien, S. Deser, E.P. Gross (Gordon and Breach, New York, 1968), pp. 195–267Google Scholar
  44. 44.
  45. 45.
    R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Dover, New York, 2007)MATHGoogle Scholar
  46. 46.
    A. Lotfi, J. Vrabec, J. Fischer, Mol. Phys. 76(6), 1319 (1992). doi:10.1080/00268979200102111. http://dx.doi.org/10.1080/00268979200102111
  47. 47.
  48. 48.
    R. Abe, Prog. Theor. Phys. 81, 990 (1989). http://ptp.oxfordjournals.org/content/81/5/990.full.pdf
  49. 49.
    P.I. Bystrov, D.N. Kagan, G.A. Krechetova, E.E. Shpilrain, Liquid Metal Coolants for Heat Pipes and Power Plants (Hemisphere, New York, 1990)Google Scholar
  50. 50.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Computational Science Series, vol 1. (Academic Press, San Diego, 2001)Google Scholar
  51. 51.
    N.B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases in Normal and Dissociated States (Hemisphere, Washington, 1975)Google Scholar
  52. 52.
    W. Schröer, G. Pottlacher, High Temp. -High Pressures 43, 201 (2014)Google Scholar
  53. 53.
    A.N. Fletcher, J. Phys. Chem. 75(12), 1808 (1971). doi:10.1021/j100681a009. http://dx.doi.org/10.1021/j100681a009
  54. 54.
    P. Linstrom, W. Mallard (eds.), NIST Chemistry WebBook, NIST Standard Reference Database 69 (National Institute of Standards and Technology, Gaithersburg MD, 2004). http://webbook.nist.gov
  55. 55.
    R.R. Singh, K.S. Pitzer, J.J. de Pablo, J.M. Prausnitz, J. Chem. Phys. 92(9), 5463 (1990). doi:10.1063/1.458524. http://link.aip.org/link/?JCP/92/5463/1
  56. 56.
    S. Jiang, K.E. Gubbins, Mol. Phys. 86(4), 599 (1995). doi:10.1080/00268979500102221. http://dx.doi.org/10.1080/00268979500102221
  57. 57.
    N.D. Mermin, J.J. Rehr, Phys. Rev. Lett. 26(19), 1155 (1971). doi:10.1103/PhysRevLett.26.1155 CrossRefADSGoogle Scholar
  58. 58.
    A.L. Talapov, H.W.J. Blote, J. Phys. A: Math. Gen. 29(17), 5727 (1996). doi:10.1088/0305-4470/29/17/042. http://dx.doi.org/10.1088/0305-4470/29/17/042
  59. 59.
    N.G. Polikhronidi, I.M. Abdulagatov, G.V. Stepanov, R.G. Batyrova, Int. J. Thermophys. 28, 163 (2007)CrossRefADSGoogle Scholar
  60. 60.
    A. Alekhin, B. Abdikarimov, L. Bulavin, Y. Ostapchuk, E. Rudnikov, Y. Shimanskaya, Ukrainian J. Phys. 55, 897 (2010)Google Scholar
  61. 61.
    K.S. Pitzer, Pure Appl. Chem. 61, 979 (1989). doi:10.1351/pac198961060979 CrossRefGoogle Scholar
  62. 62.
    V. Kulinskii, N. Malomuzh, J. Mol. Liq. 158, 166 (2011). doi:10.1016/j.molliq.2010.11.013. http://dx.doi.org/10.1016/j.molliq.2010.11.013
  63. 63.
    Y.C. Kim, M.E. Fisher, J. Phys. Chem. B 108, 6750–6759 (2004). doi:10.1021/jp037071f CrossRefGoogle Scholar
  64. 64.
    J.A. Barker, D. Henderson, Rev. Mod. Phys. 48(4), 587 (1976). doi:10.1103/RevModPhys.48.587 MathSciNetCrossRefADSGoogle Scholar
  65. 65.
    V.L. Kulinskii, Liquid-gas spinodal and the interfacial properties from the lattice gas-fluid isomorphism approach, in 6th International Workshop on Nonequilibrium Thermodynamics and 3rd Lars Onsager Symposium IWNET 2012 at Røros, Norway, http://www.complexfluids.ethz.ch/CONF/g/SLIDES/Kulinskii.pdf. Accessed 19–24 Aug 2012
  66. 66.
    V.L. Kulinskii, J. Mol. Liq. 105(2–3), 273 (2003). doi:10.1016/S0167-7322(03)00067-9. http://dx.doi.org/10.1016/S0167-7322(03)00067-9
  67. 67.
    V. Kulinskii, N. Malomuzh, Physica A 388(5), 621 (2009). doi:10.1016/j.physa.2008.11.014. http://dx.doi.org/10.1016/j.physa.2008.11.014

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonid Bulavin
    • 1
  • Vadim Cheplak
    • 2
  • Vladimir L. Kulinskii
    • 2
  1. 1.Department of Molecular PhysicsFaculty of Physics, Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Department of Theoretical PhysicsOdessa National UniversityOdessaUkraine

Personalised recommendations