Structural Study of Star Polyelectrolytes and Their Porous Multilayer Assembly in Solution

  • Weinan Xu
  • Sidney T. Malak
  • Felix A. Plamper
  • Christopher V. Synatschke
  • Axel H. E. Müller
  • William T. Heller
  • Yuri B. Melnichenko
  • Vladimir V. Tsukruk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 171)

Abstract

Star polyelectrolytes with responsive properties to external stimuli, such as pH, temperature and ionic condition, were utilized to fabricate layer-by-layer (LbL) microcapsules . The microstructure of star polyelectrolytes was first studied in semi-dilute solution by in situ small-angle neutron scattering (SANS). These measurements show that with the addition of salts, arms of strong cationic star polyelectrolytes will contract and the spatial ordering of the stars would be interrupted. SANS measurements were also performed on the microcapsules in order to study their internal structure and responsive properties in solution. The results show that with the increase of shell thickness, microcapsules undergo a change of fractal dimension. Microcapsules with thinner shell have a surface fractal structure with rough interface, while those with thicker shell generally have a mass fractal structure of 3D random network. With the change of surrounding environment (pH, temperature, or ionic condition), the morphology and permeability of microcapsules are changed concurrently, for example, with the addition of multivalent salt, there is a surface- to mass-fractal transition, with the correlation length decreasing by around 50 %. This study provides insight into the mechanism of the responsiveness of novel star polyelectrolytes and their assembled multilayer structures.

Notes

Acknowledgments

This work is supported by the NSF-DMR 1002810 grant. Research conducted at ORNL’s High Flux Isotope Reactor and Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

References

  1. 1.
    A.V. Dobrynin, M. Rubinstein, Prog. Polym. Sci. 30, 1049 (2005)CrossRefGoogle Scholar
  2. 2.
    G.D. Wignall, Y.B. Melnichenko, Rep. Prog. Phys. 68, 1761 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    S. Peleshanko, V.V. Tsukruk, Progr. Polym. Sci. 33, 523 (2008)CrossRefGoogle Scholar
  4. 4.
    S. Peleshanko, V.V. Tsukruk, J. Polym. Sci., Part B: Polym. Phys. 50, 83 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Xu, F.A. Plamper, M. Ballauff, A.H.E. Müller, Adv. Polym. Sci. 228, 1 (2010)CrossRefGoogle Scholar
  6. 6.
    O.V. Borisov, E.B. Zhulina, F.A.M. Leermakers, M. Ballauff, A.H.E. Müller, Adv. Polym. Sci. 241, 1 (2011)CrossRefGoogle Scholar
  7. 7.
    M.C. Stuart, W. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 9, 101 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    F.A. Plamper, A.P. Gelissen, J. Timper, A. Wolf, A.B. Zezin, W. Richtering, H. Tenhu, U. Simon, J. Mayer, O.V. Borisov, D.V. Pergushov, Macromol. Rapid Commun. 34, 855 (2013)CrossRefGoogle Scholar
  9. 9.
    F.L. Verso, C.N. Likos, L. Reatto, Progr. Colloid Polym. Sci. 133, 78 (2006)CrossRefGoogle Scholar
  10. 10.
    C.Y. Shew, C. Do, K. Hong, Y. Liu, L. Porcar, G.S. Smith, W.R. Chen, J. Chem. Phys. 137, 024907 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A. Jusufi, C.N. Likos, M. Ballauff, Colloid. Polym. Sci. 282, 910 (2004)Google Scholar
  12. 12.
    M. Ballauff, M. Patel, S. Rosenfeldt, N. Dingenouts, T. Narayanan, A.H.E. Müller, F.A. Plamper, Polym. Mater. Sci. Eng. 93, 232 (2005)Google Scholar
  13. 13.
    I. Choi, D.D. Kulkarni, W. Xu, C. Tsitsilianis, V.V. Tsukruk, Langmuir 29, 9761 (2013)Google Scholar
  14. 14.
    B.S. Kim, H.F. Gao, A.A. Argun, K. Matyjaszewski, P.T. Hammond, Macromolecules 42, 368 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    I. Choi, S.T. Malak, W. Xu, W.T. Heller, C. Tsitsilianis, V.V. Tsukruk, Macromolecules 46, 1425 (2013)Google Scholar
  16. 16.
    M. Vamvakaki, C.S. Patrickios, P. Lindner, M. Gradzielski, Langmuir 23, 10433 (2007)CrossRefGoogle Scholar
  17. 17.
    R. Blaak, C.N. Likos, J. Phys.: Condens. Matter 24, 322101 (2012)Google Scholar
  18. 18.
    F.A. Plamper, A. Schmalz, E. Penott-Chang, M. Drechsler, A. Jusufi, M. Ballauff, A.H.E. Müller, Macromolecules 40, 5689 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    J.K. Zhao, C.Y. Gao, D. Liu, J. Appl. Crystallogr. 43, 1068 (2010)CrossRefGoogle Scholar
  20. 20.
    O. Arnold, J. C. Bilheux, J.M. Borreguero, A. Buts, S.I. Campbell, L. Chapon, M. Doucet, N. Draper, R. Ferraz Leal, M.A. Gigg, V.E. Lynch, A. Markvardsen, D.J. Mikkelson, R.L. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos, T.G. Perring, P.F. Peterson, S. Ren, M. A. Reuter, A.T. Savici, J.W. Taylor, R.J. Taylor, R. Tolchenov, W. Zhou, J. Zikovsky, Nucl. Instrum. Methods Phys. Res. Sect. A 764, 156 (2014)Google Scholar
  21. 21.
    G.D. Wignall, K.C. Littrell, W.T. Heller, Y.B. Melnichenko, K.M. Bailey, G.W. Lynn, D.A. Myles, V.S. Urban, M.V. Buchanan, D.L. Selby, P.D. Butler, J. Appl. Crystallogr. 45, 990 (2012)CrossRefGoogle Scholar
  22. 22.
    G.D. Wignall, F.S. Bates, J. Appl. Cryst. 20, 28 (1987)CrossRefGoogle Scholar
  23. 23.
    Z. Iatridi, C. Tsitsilianis, Polymers 3, 1911 (2011)CrossRefGoogle Scholar
  24. 24.
    F.A. Plamper, M. Ruppel, A. Schmalz, O. Borisov, M. Ballauff, A.H.E. Müller, Macromolecules 40, 8361 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    F.A. Plamper, A. Walther, A.H.E. Müller, M. Ballauff, Nano Lett. 7, 167 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    D. Wang, D. Moses, G. C. Bazan, A.J. Heeger, J. Lal, J. Macromol. Sci. A Pure Appl. Chem. 38, 1175 (2001)Google Scholar
  27. 27.
    M.K. Crawford, R.J. Smallew, G. Cogen, B. Hogan, B. Wood, S.K. Kumar, Y.B. Melnichenko, L. He, W. Guise, B. Hammouoda, Phys. Rev. Lett. 110, 196001 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    H. Benoit, J. Polym. Sci. 11, 507 (1953)ADSCrossRefGoogle Scholar
  29. 29.
    M. Laurati, J. Stellbrink, R. Lund, L. Willner, E. Zaccarelli, D. Richter, Phys. Rev. E 76, 041503 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    L. Willner, O. Jucknischke, D. Richter, J. Roovers, L.L. Zhou, P.M. Toporowski, L.J. Fetters, J.S. Huang, M.Y. Lin, N. Hadjichristidis, Macromolecules 27, 3821 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    H. Hsu, W. Paul, K. Binder, J. Chem. Phys. 137, 174902 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    W. Xu, I. Choi, F.A. Plamper, C.V. Synatschke, A.H.E. Müller, V.V. Tsukruk, ACS Nano 7, 598 (2013)CrossRefGoogle Scholar
  33. 33.
    T. Freltoft, J.K. Kjems, S.K. Sinha, Phys. Rev. B 33, 269 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    P.W. Schmidt, J. Appl. Cryst. 24, 414 (1991)CrossRefGoogle Scholar
  35. 35.
    K. Kratz, T. Hellweg, W. Eimer, Polymer 42, 6631 (2001)CrossRefGoogle Scholar
  36. 36.
    V.V. Tsukruk, V.N. Bliznyuk, D.W. Visser, A.L. Campbell, T. Bunning, W.W. Adams, Macromolecules 30, 6615 (1997)ADSCrossRefGoogle Scholar
  37. 37.
    V.V. Tsukruk, Prog. Polym. Sci. 22, 247 (1997)CrossRefGoogle Scholar
  38. 38.
    P. Debye, A.M. Bueche, J. Appl. Phys. 20, 518 (1949)ADSCrossRefGoogle Scholar
  39. 39.
    P. Debye, R. Anderson, H. Brumberger, J. Appl. Phys. 28, 679 (1957)ADSCrossRefGoogle Scholar
  40. 40.
    S. Roldán-Vargas, R. Barnadas-Rodríguez, A. Martín-Molina, M. Quesada-Pérez, J. Estelrich, J. Callejas-Fernández, Phys. Rev. E 78, 010902 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Mei, K. Lauterbach, M. Hoffmann, O.V. Borisov, M. Ballauff, A. Jusufi, Phys. Rev. Lett. 97, 158301 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    W. Xu, I. Choi, F.A. Plamper, C.V. Synatschke, A.H.E. Müller, Y.B. Melnichenko, V.V. Tsukruk, Macromolecules 47, 2112 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    W. Xu, P.A. Ledin, F.A. Plamper, C.V. Synatschke, A.H.E. Müller, Y.B. Melnichenko, V.V. Tsukruk, Macromolecules 47, 7858 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    M. Bergström, J.S. Pedersen, P. Schurtenberger, S.U. Egelhaaf, J. Phys. Chem. B 103, 9888 (1999)CrossRefGoogle Scholar
  45. 45.
    F. Nallet, R. Laversanne, D. Roux, J. Phys. II 3, 487 (1993)Google Scholar
  46. 46.
    T. Thavanesan, C. Herbert, F.A. Plamper, Langmuir 30, 5609 (2014)CrossRefGoogle Scholar
  47. 47.
    W. Yuan, H. Zou, W. Guo, A. Wang, J. Ren, J. Mater. Chem. 22, 24783 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Weinan Xu
    • 1
  • Sidney T. Malak
    • 1
  • Felix A. Plamper
    • 2
  • Christopher V. Synatschke
    • 3
  • Axel H. E. Müller
    • 3
    • 4
  • William T. Heller
    • 5
  • Yuri B. Melnichenko
    • 5
  • Vladimir V. Tsukruk
    • 1
  1. 1.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institute of Physical ChemistryRWTH Aachen UniversityAachenGermany
  3. 3.Makromolekulare Chemie II and Bayreuther Zentrum für Kolloide und GrenzflächenUniversität BayreuthBayreuthGermany
  4. 4.Institut für Organische ChemieJohannes Gutenberg-Universität MainzMainzGermany
  5. 5.Biology and Soft Matter Science DivisionNeutron Scattering Directorate, Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations