Advertisement

A Fully Fault-Tolerant Representation of Quantum Circuits

  • Alexandru Paler
  • Ilia Polian
  • Kae Nemoto
  • Simon J. Devitt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9138)

Abstract

We present a quantum circuit representation consisting entirely of qubit initialisations (I), a network of controlled-NOT gates (C) and measurements with respect to different bases (M). The ICM representation is useful for optimisation of quantum circuits that include teleportation, which is required for fault-tolerant, error corrected quantum computation. The non-deterministic nature of teleportation necessitates the conditional introduction of corrective quantum gates and additional ancillae during circuit execution. Therefore, the standard optimisation objectives, gate count and number of wires, are not well-defined for general teleportation-based circuits. The transformation of a circuit into the ICM representation provides a canonical form for an exact fault-tolerant, error corrected circuit needed for optimisation prior to the final implementation in a realistic hardware model.

Keywords

Quantum Circuit Quantum Gate CNOT Gate Gate Count Hadamard Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical Review A 70(5), 052328 (2004)CrossRefGoogle Scholar
  2. 2.
    Aharonov, D.: A simple proof that Toffoli and Hadamard are quantum universal. arXiv preprint quant-ph/0301040 (2003)
  3. 3.
    Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of clifford+t circuits via matroid partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33(10), 1476–1489 (2014)CrossRefGoogle Scholar
  4. 4.
    Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32(6), 818–830 (2013)CrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an Unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bravyi, S., Kitaev, A.: Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A 71(2), 022316 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nature Physics 5(1), 19–26 (2009)CrossRefGoogle Scholar
  8. 8.
    Cheung, D., Maslov, D., Severini, S.: Translation techniques between quantum circuit architectures. In: Workshop on Quantum Information Processing. Citeseer (2007)Google Scholar
  9. 9.
    Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of the ACM (JACM) 54(2), 8 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L., Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quantum computer. New Journal of Physics 11(8), 083032 (2009)CrossRefGoogle Scholar
  11. 11.
    Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Reports on Progress in Physics 76(7), 076001 (2013)CrossRefGoogle Scholar
  12. 12.
    Devitt, S.J., Stephens, A.M., Munro, W.J., Nemoto, K.: Requirements for fault-tolerant factoring on an atom-optics quantum computer. Nature communications 4 (2013)Google Scholar
  13. 13.
    Devitt, S.J.: The Mequanics game (2013). www.mequanics.com
  14. 14.
    Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface Codes, Towards practical large-scale quantum computation. Phys. Rev. A. 86, 032324 (2012)CrossRefGoogle Scholar
  15. 15.
    Fowler, A.G.: Time-optimal quantum computation. arXiv preprint arXiv:1210.4626 (2012)
  16. 16.
    Gottesman, D.: The Heisenberg Representation of Quantum computers. quant-ph/9807006 (1998)
  17. 17.
    Gottesman, D.: What is the overhead required for fault-tolerant quantum computation? arXiv preprint arXiv:1310.2984 (2013)
  18. 18.
    Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Information & Computation 11(1), 142–166 (2011)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Jones, C.N.: Novel constructions for the fault-tolerant Toffoli gate. arXiv preprint arXiv:1212.5069 (2012)
  20. 20.
    Cody Jones, N., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D., Yamamoto, Y.: A Layered Architecture for Quantum Computing Using Quantum Dots. Phys. Rev. X., 2(031007) (2012)Google Scholar
  21. 21.
    Miller, D.M., Soeken, M., Drechsler, R.: Mapping NCV circuits to optimized clifford+T circuits. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 163–175. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Moore, S.K.: Computing’s power limit demonstrated. Spectrum, IEEE 49(5), 14–16 (2012)CrossRefGoogle Scholar
  23. 23.
    Nemoto, K., Trupke, M., Devitt, S.J., Stephens, A.M., Buczak, K., Nobauer, T., Everitt, M.S., Schmiedmayer, J., Munro, W.J.: Photonic architecture for scalable quantum information processing in NV-diamond. Phys. Rev. X. 4, 031022 (2014)Google Scholar
  24. 24.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press (2010)Google Scholar
  25. 25.
    Paetznik, A., Fowler, A.G.: Quantum circuit optimization by topological compaction in the surface code. arXiv preprint arXiv:1304.2807 (2013)
  26. 26.
    Paler, A., Devitt, S., Nemoto, K., Polian, I.: Software-based Pauli tracking in fault-tolerant quantum circuits. In: Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014, pp. 1–4. IEEE (2014)Google Scholar
  27. 27.
    Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a survey. ACM Computing Surveys (CSUR) 45(2), 21 (2013)CrossRefGoogle Scholar
  28. 28.
    Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(6), 1000–1010 (2006)CrossRefGoogle Scholar
  29. 29.
    Wille, R., Drechsler, R.: Towards a design flow for reversible logic. Springer (2010)Google Scholar
  30. 30.
    Wooters, W.K., Zurek, W.H.: A Single Quantum Cannot be Cloned. Nature (London) 299, 802 (1982)CrossRefGoogle Scholar
  31. 31.
    Yao, N.Y., Jiang, L., Gorshkov, A.V., Maurer, P.C., Giedke, G., Cirac, J.I., Lukin, M.D.: Scalable Architecture for a Room Temperature Solid-State Quantum Information Processor. Nature Communications 3, 800 (2012)CrossRefGoogle Scholar
  32. 32.
    Zhou, X., Leung, D.W., Chuang, I.L.: Methodology for quantum logic gate construction. Physical Review A 62(5), 052316 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexandru Paler
    • 1
  • Ilia Polian
    • 1
  • Kae Nemoto
    • 4
  • Simon J. Devitt
    • 2
    • 3
    • 4
  1. 1.University of PassauPassauGermany
  2. 2.Ochanomizu UniversityBunkyo-ku, TokyoJapan
  3. 3.Graduate School of Media and GovernanceKeio UniversityFujisawaJapan
  4. 4.National Institute of InformaticsChiyoda-ku, TokyoJapan

Personalised recommendations