A Hierarchy of Fast Reversible Turing Machines

  • Holger Bock Axelsen
  • Sebastian Jakobi
  • Martin Kutrib
  • Andreas Malcher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9138)

Abstract

Reversible Turing machines with a working tape and a one-way or two-way read-only input tape are considered. We investigate the classes of languages acceptable by such devices with small time bounds in the range between real time and linear time, i.e., time bounds of the form \(n+r(n)\) where \(r\in o(n)\) is a sublinear function. It is shown that there exist infinite time hierarchies of separated complexity classes in that range. We then turn to the question of whether reversible Turing machines in the range of interest are weaker than general ones or not. This is answered in the affirmative by proving that there are languages accepted by irreversible one-way Turing machines in real time that cannot be accepted by any reversible one-way machine in less than linear time.

Keywords

Reversible Turing machines Structural computational complexity Time hierarchies Fast computations Real time vs. linear time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsen, H.B.: Time complexity of tape reduction for reversible turing machines. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 1–13. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput. 18, 766–776 (1989)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Cole, S.N.: Real-time computation by \(n\)-dimensional iterative arrays of finite-state machines. IEEE Trans. Comput. 18, 349–365 (1969)MATHCrossRefGoogle Scholar
  4. 4.
    Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117, 285–306 (1965)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hennie, F.C.: One-tape, off-line Turing machine computations. Inform. Control 8, 553–578 (1965)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jacopini, G., Mentrasti, P., Sontacchi, G.: Reversible Turing machines and polynomial time reversibly computable functions. SIAM J. Disc. Math. 3, 241–254 (1990)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Klein, A., Kutrib, M.: Deterministic Turing machines in the range between real-time and linear-time. Theoret. Comput. Sci. 289, 253–275 (2002)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. System Sci. 60, 354–367 (2000)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Springer (1993)Google Scholar
  10. 10.
    Paul, W.J.: Komplexitätstheorie. Teubner (1978)Google Scholar
  11. 11.
    Pin, J.: On the language accepted by finite reversible automata. In: Ottmann, T. (ed.) Automata, Languages and Programming. LNCS, vol. 267, pp. 237–249. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  12. 12.
    Rosenberg, A.L.: Real-time definable languages. J. ACM 14, 645–662 (1967)MATHCrossRefGoogle Scholar
  13. 13.
    Trakhtenbrot, B.A.: Turing machine computations with logarithmic delay. Algebra i Logika 3, 33–48 (1964)MATHGoogle Scholar
  14. 14.
    Vitányi, P.M.B.: Time, space, and energy in reversible computing. In: Bagherzadeh, N., Valero, M., Ramírez, A. (eds.) Computing Frontiers (CF 2005), pp. 435–444. ACM (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Holger Bock Axelsen
    • 1
  • Sebastian Jakobi
    • 2
  • Martin Kutrib
    • 2
  • Andreas Malcher
    • 2
  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark
  2. 2.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations