Towards Modelling of Local Reversibility

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9138)

Abstract

We describe a new operator for reversible process calculi that allows us to model locally controlled reversibility. In our setting, actions can be undone spontaneously or as a part of pairs of so-called concerted actions, where performing forwards a weak action forces undoing of another action, without the need of a global control or a memory. We model an example from chemistry, the simple interaction of two water molecules, and give an informal explanation of the role of the new operator.

Keywords

Reversible process calculi Out-of-causal order reversibility Local reversibility Modelling of chemical reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible p-calculus. In: LICS 2013, pp. 388–397. IEEE Computer Society (2013)Google Scholar
  2. 2.
    Curti, M., Degano, P., Baldari, C.T.: Causal pi-calculus for biochemical modelling. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 21–33. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  3. 3.
    Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  4. 4.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Fokkink, W.: Introduction to Process Algebra (Texts in Theoretical Computer Science. An EATCS Series). Springer (2000)Google Scholar
  6. 6.
    Lanese, I., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 370–390. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling reversibility in higher-order pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  8. 8.
    Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  10. 10.
    Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. The Journal of Logic and Algebraic Programming 73(1–2), 70–96 (2007)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052, pp. 303–318. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Phillips, I., Ulidowski, I., Yuen, S.: Modelling of bonding with processes and events. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 141–154. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Silverman, W., Regev, A., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proceedings of Pacific Symposium on Biocomputing 2001, pp. 459–470. World Scientific Press (2001)Google Scholar
  15. 15.
    Ulidowski, I., Phillips, I., Yuen, S.: Concurrency and reversibility. In: Yamashita, S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 1–14. Springer, Heidelberg (2014) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LeicesterLeicesterUK

Personalised recommendations