Advertisement

Towards a Cost Metric for Nearest Neighbor Constraints in Reversible Circuits

  • Abhoy Kole
  • Kamalika Datta
  • Indranil Sengupta
  • Robert Wille
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9138)

Abstract

This work in progress report proposes a new metric for estimating nearest neighbor cost at the reversible circuit level. This is in contrast to existing literature where nearest neighbor constraints are usually considered at the quantum circuit level. In order to define the metric, investigations on a state-of-the-art reversible to quantum mapping scheme have been conducted. From the retrieved information, a proper estimation to be used as a cost metric has been obtained. Using the metric, it becomes possible for the first time to optimize a reversible circuit with respect to nearest neighbor constraints.

Keywords

Quantum cost Nearest neighbor cost Quantum circuit Reversible circuit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A (Atomic, Molecular, and Optical Physics) 52(5), 3457–3467 (1995)CrossRefGoogle Scholar
  2. 2.
    Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis of reversible circuits by graph partitioning. CoRR (2011)Google Scholar
  3. 3.
    Maslov, D., Young, C., Miller, D.M., Dueck, G.W.: Quantum circuit simplification using templates. In: Design, Automation and Test in Europe, pp. 1208–1213 (2005)Google Scholar
  4. 4.
    Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)Google Scholar
  5. 5.
    Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffolli gates. In: Intl. Symposium on Multi-valued Logic (ISMVL), pp. 288–293, May 2011Google Scholar
  6. 6.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)Google Scholar
  7. 7.
    Saeedi, M., Sedighi, M., Zamani, M.S.: A novel synthesis algorithm for reversible circuits. In: Intl. Conference on CAD, pp. 65–68. IEEE (2007)Google Scholar
  8. 8.
    Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quant. Info. Proc. 10(3), 355–377 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: Design Automation Conf., pp. 41–46 (2013)Google Scholar
  10. 10.
    Shafaei, A., Saeedi, M., Pedram, M.: Qubit placement to minimize communication overhead in 2D quantum architectures. In: ASP Design Automation Conf., pp. 495–500 (2014)Google Scholar
  11. 11.
    Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. on CAD of Integrated Circuits and Systems 22(6), 710–722 (2003)CrossRefGoogle Scholar
  12. 12.
    Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: Asia and South Pacific Design Automation Conference, pp. 85–92 (2012)Google Scholar
  13. 13.
    Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conference, pp. 270–275 (2009)Google Scholar
  14. 14.
    Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: ASP Design Automation Conf., pp. 145–150 (2013)Google Scholar
  15. 15.
    Wille, R., Lye, A., Drechsler, R.: Considering nearest neighbor constraints of quantum circuits at the reversible circuit level. Quantum Information Processing 13(2), 185–199 (2014)zbMATHCrossRefGoogle Scholar
  16. 16.
    Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. on CAD 33(12), 1818–1831 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abhoy Kole
    • 1
  • Kamalika Datta
    • 2
  • Indranil Sengupta
    • 1
  • Robert Wille
    • 3
    • 4
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKharagpurIndia
  2. 2.Department of Computer Science and EngineeringNational Institute of Technology MeghalayaShillongIndia
  3. 3.Institute of Computer ScienceUniversity of BremenBremenGermany
  4. 4.Cyber-Physical Systems, DFKI GmbHBremenGermany

Personalised recommendations