Synthesis of Quantum Circuits for Dedicated Physical Machine Descriptions

  • Philipp Niemann
  • Saikat Basu
  • Amlan Chakrabarti
  • Niraj K. Jha
  • Robert Wille
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9138)

Abstract

Quantum computing has been attracting increasing attention in recent years because of the rapid advancements that have been made in quantum algorithms and quantum system design. Quantum algorithms are implemented with the help of quantum circuits. These circuits are inherently reversible in nature and often contain a sizeable Boolean part that needs to be synthesized. Consequently, a large body of research has focused on the synthesis of corresponding reversible circuits and their mapping to the quantum operations supported by the quantum system. However, reversible circuit synthesis has usually not been performed with any particular target technology in mind, but with respect to an abstract cost metric. When targeting actual physical implementations of the circuits, the adequateness of such an approach is unclear. In this paper, we explicitly target synthesis of quantum circuits at selected quantum technologies described through their Physical Machine Descriptions (PMDs). We extend the state-of-the-art synthesis flow in order to realize quantum circuits based on just the primitive quantum operations supported by the respective PMDs. Using this extended flow, we evaluate whether the established reversible circuit synthesis methods and metrics are still applicable and adequate for PMD-specific implementations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)Google Scholar
  2. 2.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory of Computing, pp. 212–219 (1996)Google Scholar
  3. 3.
    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  4. 4.
    Shende, V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. on CAD 22(6), 710–722 (2003)CrossRefGoogle Scholar
  5. 5.
    Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. on CAD 25(11), 2317–2330 (2006)CrossRefGoogle Scholar
  6. 6.
    Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 206–209, August 2007Google Scholar
  7. 7.
    Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: ACM Design Automation Conference, pp. 270–275, July 2009Google Scholar
  8. 8.
    Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of reversible circuits with minimal lines for large functions. In: ASP Design Automation Conference, January 2012Google Scholar
  9. 9.
    Lin, C.-C., Jha, N.K.: RMDDS: Reed-Muller decision diagram synthesis of reversible logic circuits. ACM J. Emerg. Technol. Comput. Syst. 10(2) (2014)Google Scholar
  10. 10.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. The American Physical Society 52, 3457–3467 (1995)Google Scholar
  11. 11.
    Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: Design, Automation and Test in Europe Conference, pp. 1208–1213 (2005)Google Scholar
  12. 12.
    Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control Toffoli gates. In: Int. Symposium on Multiple-Valued Logic, pp. 288–293 (2011)Google Scholar
  13. 13.
    Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of reversible circuits to quantum circuits using multiple target lines. In: ASP Design Automation Conference, pp. 145–150, January 2013Google Scholar
  14. 14.
    ARDA: Quantum computation roadmap. http://qist.lanl.gov/qcomp_map.shtml
  15. 15.
    Lin, C.-C., Chakrabarti, A., Jha, N.K.: Optimized quantum gate library for various physical machine descriptions. IEEE Trans. on Very Large Scale Integration (VLSI) Systems 21(11), 2055–2068 (2013)CrossRefGoogle Scholar
  16. 16.
    Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for large reversible circuits. In: Design, Automation and Test in Europe Conference, pp. 1204–1207 (2011)Google Scholar
  17. 17.
    Taylor, J.M., Petta, J.R., Johnson, A.C., Yacoby, A., Marcus, C.M., Lukin, M.D.: Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys. Rev. B 76 (2007)Google Scholar
  18. 18.
    Strauchand, F.W., Johnson, P.R., Dragt, A.J., Lobb, C.J., Anderson, J.R., Wellstood, F.C.: Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91 (2003)Google Scholar
  19. 19.
    Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74(20), 4091–4094 (1995)CrossRefGoogle Scholar
  20. 20.
    Deutsch, I., Brennen, G., Jessen, P.: Quantum computing with neutral atoms in an optical lattice. Fortschritte der Physik [Progress of Physics] 48, 925–943 (2000)CrossRefGoogle Scholar
  21. 21.
    Briegel, H.J., Calarco, T., Jaksch, D., Cirac, J.I., Zoller, P.: Quantum computing with neutral atoms. Journal of Modern Optics 47, 415–451 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Knil, E., LaFlamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)CrossRefGoogle Scholar
  23. 23.
    Inoue, S.I., Aoyagi, Y.: Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties. Phys. Rev. Lett. 94 (2005)Google Scholar
  24. 24.
    Lin, C.-C., Chakrabarti, A., Jha, N.K.: FTQLS: Fault-tolerant quantum logic synthesis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22(6), 1350–1363 (2014)CrossRefGoogle Scholar
  25. 25.
    Lin, C.-C., Chakrabarti, A., Jha, N.K.: QLib: Quantum module library. ACM J. Emerg. Technol. Comput. Syst. 11(1) (2014)Google Scholar
  26. 26.
    Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Int. Symposium on Multiple-Valued Logic, pp. 220–225 (2008). http://www.revlib.org

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Philipp Niemann
    • 1
  • Saikat Basu
    • 2
  • Amlan Chakrabarti
    • 2
  • Niraj K. Jha
    • 3
  • Robert Wille
    • 1
    • 4
  1. 1.Institute of Computer ScienceUniversity of BremenBremenGermany
  2. 2.A.K. Choudhury School of I.TUniversity of CalcuttaCalcuttaIndia
  3. 3.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA
  4. 4.Cyber-Physical SystemsDFKI GmbHBremenGermany

Personalised recommendations