Autonomous Parking Using Previous Paths

  • Christoph Siedentop
  • Viktor Laukart
  • Boris Krastev
  • Dietmar Kasper
  • Andreas Wedel
  • Gabi Breuel
  • Cyrill Stachniss
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)

Abstract

This paper is about mapping the drivable area of a parking lot for autonomous parking. Manual map creation for automated parking is often impossible, especially when parking on private grounds. One aspect is that the number of private properties is very large and private parking should not be included in public maps. The other aspect is that an owner and operator of a car often has very specific ideas of where the car may be driven. Our approach creates maps using just the previously driven paths. We describe the drivable area through triangles using established methods from Computer Graphics. These triangles are generated by overlaying circles of a certain radius over the driven paths. These circles create a so-called alpha-shape and approximate the drivable area. The description through triangles (“Delaunay triangulation”) allows for fast retrieval and easy expansion with new paths. Finally, a simple conversion of the triangulation into a Voronoi diagram enables fast path searching. In this paper we thus present an efficient framework for determining drivable areas and allows searching for a drivable path. Finally, we show that this method enables real-time implementation in an autonomous car and can cope with new obstacles at planning time.

Keywords

Autonomous parking Mapping Drivable area Delaunay triangulation Alpha shapes 

References

  1. 1.
    Aljazzar H, Leue S (2011) K*: a heuristic search algorithm for finding the k shortest paths. Artif Intell 175(18):2129–2154MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alzantot M, Youssef M (2012) Crowdinside: automatic construction of indoor floorplans. In: Proceedings of the 20th international conference on advances in geographic information systems. ACM, pp 99–108Google Scholar
  3. 3.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT Press, CambridgeGoogle Scholar
  4. 4.
    Dahlkamp H, Kaehler A, Stavens D, Thrun S, Bradski GR (2006) Self-supervised monocular road detection in desert terrain. In: Robotics: science and systems. PhiladelphiaGoogle Scholar
  5. 5.
    de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry: algorithms and applications. Springer Science & Business Media, BerlinGoogle Scholar
  6. 6.
    Delaunay B (1934) Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk 7(793–800):1–2Google Scholar
  7. 7.
    Dickmann J, Appenrodt N, Bloecher H-L, Brenk C, Hackbarth T, Hahn M, Klappstein J, Muntzinger M, Sailer A (2014) Radar contribution to highly automated driving. In: 11th European radar conference (EuRAD). IEEE, pp 412–415Google Scholar
  8. 8.
    Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inf Theory 29(4):551–559MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Eppstein D (1998) Finding the k shortest paths. SIAM J Comput 28(2):652–673MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107Google Scholar
  11. 11.
    McCarthy Z, Bretl T, Hutchinson S (2012) Proving path non-existence using sampling and alpha shapes. In: IEEE international conference on robotics and automation (ICRA). IEEE, pp 2563–2569Google Scholar
  12. 12.
    Mehlhorn K, Näher S (1999) LEDA: a platform for combinatorial and geometric computing. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Poppinga J, Birk A, Pathak K (2008) Hough based terrain classification for realtime detection of drivable ground. J Field Robot 25(1–2):67–88CrossRefGoogle Scholar
  14. 14.
    Rufli M, Siegwart R (2010) On the design of deformable input-/state-lattice graphs. In: IEEE international conference on robotics and automation (ICRA). IEEE, pp 3071–3077Google Scholar
  15. 15.
    Russell S, Norvig P (2009) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall Press, Upper Saddle RiverGoogle Scholar
  16. 16.
    Sakkalis T, Charitos Ch (1999) Approximating curves via alpha shapes. Graphical models and image processing 61(3):165–176CrossRefGoogle Scholar
  17. 17.
    Schadler M, Stückler J, Behnke S (2014) Rough terrain 3d mapping and navigation using a continuously rotating 2d laser scanner. KI-Künstliche Intelligenz 28(2):93–99CrossRefGoogle Scholar
  18. 18.
    Worrall S, Orchansky D, Masson F, Nieto J, Nebot E (2010) Determining high safety risk scenarios by applying context informationGoogle Scholar
  19. 19.
    Yen JY (1970) An algorithm for finding shortest routes from all source nodes to a given destination in general networksGoogle Scholar
  20. 20.
    Ziegler J, Bender P, Dang T, Stiller C (2014) Trajectory planning for berthaa local, continuous method. In: Intelligent vehicles symposium proceedings. IEEE, pp 450–457Google Scholar
  21. 21.
    Ziegler J, Werling M, Schroder J (2008) Navigating car-like robots in unstructured environments using an obstacle sensitive cost function. In: Intelligent vehicles symposium. IEEE, pp 787–791Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christoph Siedentop
    • 1
  • Viktor Laukart
    • 1
  • Boris Krastev
    • 1
  • Dietmar Kasper
    • 1
  • Andreas Wedel
    • 1
  • Gabi Breuel
    • 1
  • Cyrill Stachniss
    • 2
  1. 1.Daimler AGAutonomous DrivingSindelfingenGermany
  2. 2.Institute for Geodesy and GeoinformationUniversity of BonnBonnGermany

Personalised recommendations