Endocannabinoids and the Immune System in Health and Disease

Part of the Handbook of Experimental Pharmacology book series (HEP, volume 231)


Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells. Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines. There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types. However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained. Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion. Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system. It is speculated that endocannabinoids play an important role in maintaining the overall “fine-tuning” of the immune homeostatic balance within the host.


Anandamide Antigen presentation 2-Arachidonoylglycerol Astrocyte Basophil Cannabinoid receptor Chemokine Cytokine Dendritic cell Endocannabinoid Interferon Interleukin Lymphocyte Macrophage Mast cell Microglia Monocyte Natural killer (NK) cell Neutrophil Nitric oxide 





Abnormal cannabidiol




Autacoid local inflammation antagonism


Apolipoprotein E


Arginase 1


Blood–brain barrier


Cannabinoid receptor type 1


Cannabinoid receptor type 2


Concanavalin A


Central nervous system




Extracellular matrix


Fatty acid amide hydrolase


Human immunodeficiency virus


Herpes simplex virus type 1


Human umbilical vein endothelial cells




IL-1 receptor-associated kinase 1 binding protein


Inducible nitric oxide synthase




Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry


L-NG-nitroarginine methyl ester




Leukotriene B4


Mitogen-activated protein kinase


Methylated bovine serum albumin


Monocyte chemoattractant protein 1


Myeloid dendritic cells


Major histocompatibility complex


Mitogen-activated protein kinase phosphatase 1


Multiple sclerosis




N-Arachidonoyl glycine

NK cell

Natural killer cell




Nitric oxide


Polymerase chain reaction


Plasmacytoid dendritic cells


Prostaglandin D2


Prostaglandin E2




Peroxidase proliferator-activated receptor γ


P-selectin glycoprotein ligand 1


Reactive oxygen species


Respiratory syncytial virus


TGF-β-activated kinase 1


Trans-activator of transcription


Cytotoxic T cells


T-cell receptor

Th cells

T helper cells


Toll-like receptors


Theiler’s murine encephalomyelitis virus


Theiler’s murine encephalomyelitis virus-induced demyelinating disease


Tumor necrosis factor


TNF receptor-associated factor 6


Regulatory T cells


Vascular cell adhesion molecules


  1. Arafah K, Croix D, Vizioli J, Desmons A, Fournier I, Salzet M (2013) Involvement of nitric oxide through endocannabinoids release in microglia activation during the course of CNS regeneration in the medicinal leech. Glia 61:636–649CrossRefPubMedGoogle Scholar
  2. Balenga NA, Aflaki E, Kargl J, Platzer W, Schröder R, Blättermann S et al (2011) GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res 21:1452–1469PubMedCentralCrossRefPubMedGoogle Scholar
  3. Berdyshev EV, Boichot E, Germain N, Allain N, Anger JP, Lagente V (1997) Influence of fatty acid ethanolamides and delta9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur J Pharmacol 330:231–240CrossRefPubMedGoogle Scholar
  4. Bittner S, Meuth SG, Göbel K, Melzer N, Herrmann AM, Simon OJ et al (2009) TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. Brain 132:2501–2516PubMedCentralCrossRefPubMedGoogle Scholar
  5. Cabral GA, Toney DM, Fischer-Stenger K, Harrison MP, Marciano-Cabral F (1995) Anandamide inhibits macrophage-mediated killing of tumor necrosis factor-sensitive cells. Life Sci 56:2065–2072CrossRefPubMedGoogle Scholar
  6. Chang YH, Lee ST, Lin WW (2001) Effects of cannabinoids on LPS-stimulated inflammatory mediator release from macrophages: involvement of eicosanoids. J Cell Biochem 81:715–723CrossRefPubMedGoogle Scholar
  7. Chiurchiù V, Cencioni MT, Bisicchia E, De Bardi M, Gasperini C, Borsellino G et al (2013) Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Ann Neurol 73:626–636CrossRefPubMedGoogle Scholar
  8. Chouinard F, Lefebvre JS, Navarro P, Bouchard L, Ferland C, Lalancette-Hébert M et al (2011) The endocannabinoid 2-arachidonoyl-glycerol activates human neutrophils: critical role of its hydrolysis and de novo leukotriene B4 biosynthesis. J Immunol 186:3188–3196CrossRefPubMedGoogle Scholar
  9. Chouinard F, Turcotte C, Guan X, Larose MC, Poirier S, Bouchard L et al (2013) 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. J Leukoc Biol 93:267–276CrossRefPubMedGoogle Scholar
  10. Coopman K, Smith LD, Wright KL, Ward SG (2007) Temporal variation in CB2R levels following T lymphocyte activation: evidence that cannabinoids modulate CXCL12-induced chemotaxis. Int Immunopharmacol 7:360–371CrossRefPubMedGoogle Scholar
  11. Correa F, Docagne F, Mestre L, Clemente D, Hernangomez M, Loria F et al (2009) A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem Pharmacol 77:86–100CrossRefPubMedGoogle Scholar
  12. Correa F, Hernangomez M, Mestre L, Loria F, Spagnolo A, Docagne F et al (2010) Anandamide enhances IL-10 production in activated microglia by targeting CB(2) receptors: roles of ERK1/2, JNK, and NF-kappaB. Glia 58:135–147CrossRefPubMedGoogle Scholar
  13. Correa F, Hernangómez-Herrero M, Mestre L, Loría F, Docagne F, Guaza C (2011) The endocannabinoid anandamide downregulates IL-23 and IL-12 subunits in a viral model of multiple sclerosis: evidence for a cross-talk between IL-12p70/IL-23 axis and IL-10 in microglial cells. Brain Behav Immun 25:736–749CrossRefPubMedGoogle Scholar
  14. Derocq JM, Bouaboula M, Marchand J, Rinaldi-Carmona M, Ségui M, Casellas P (1998) The endogenous cannabinoid anandamide is a lipid messenger activating cell growth via a cannabinoid receptor-independent pathway in hematopoietic cell lines. FEBS Lett 425:419–425CrossRefPubMedGoogle Scholar
  15. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949CrossRefPubMedGoogle Scholar
  16. Do Y, McKallip RJ, Nagarkatti M, Nagarkatti PS (2004) Activation through cannabinoid receptors 1 and 2 on dendritic cells triggers NF-kappaB-dependent apoptosis: novel role for endogenous and exogenous cannabinoids in immunoregulation. J Immunol 173:2373–2382CrossRefPubMedGoogle Scholar
  17. Donovan J, Grundy D (2012) Endocannabinoid modulation of jejunal afferent responses to LPS. Neurogastroenterol Motil 24:956–e465CrossRefPubMedGoogle Scholar
  18. Facci L, Dal TR, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 92:3376–3380PubMedCentralCrossRefPubMedGoogle Scholar
  19. Fernandez-Suarez D, Celorrio M, Riezu-Boj JI, Ugarte A, Pacheco R, Gonzalez H, Oyarzabal J, Hillard CJ, Franco R, Aymerich MS (2014) The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging 35:2603–2616CrossRefPubMedGoogle Scholar
  20. Galiegue S, Mary S, Marchand J, Dussossoy D, Carrière D, Carayon P et al (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61CrossRefPubMedGoogle Scholar
  21. Gasperi V, Evangelista D, Chiurchiù V, Florenzano F, Savini I, Oddi S et al (2014) 2-Arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors. Int J Biochem Cell Biol 51:79–88CrossRefPubMedGoogle Scholar
  22. Gerard CM, Mollereau C, Vassart G, Parmentier M (1991) Molecular cloning of a human cannabinoid receptor which is also expressed in testis. Biochem J 279:129–134PubMedCentralCrossRefPubMedGoogle Scholar
  23. Gokoh M, Kishimoto S, Oka S, Metani Y, Sugiura T (2005) 2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, enhances the adhesion of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes. FEBS Lett 579:6473–6478CrossRefPubMedGoogle Scholar
  24. Gokoh M, Kishimoto S, Oka S, Sugiura T (2007) 2-Arachidonoylglycerol enhances the phagocytosis of opsonized zymosan by HL-60 cells differentiated into macrophage-like cells. Biol Pharm Bull 30:1199–1205CrossRefPubMedGoogle Scholar
  25. Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, De Costa BR et al (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci USA 87:1932–1936PubMedCentralCrossRefPubMedGoogle Scholar
  26. Hernangomez M, Mestre L, Correa FG, Loria F, Mecha M, Inigo PM et al (2012) CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia 60:1437–1450CrossRefPubMedGoogle Scholar
  27. Hu SS, Arnold A, Hutchens JM, Radicke J, Cravatt BF, Wager-Miller J et al (2010) Architecture of cannabinoid signaling in mouse retina. J Comp Neurol 518:3848–3866PubMedCentralCrossRefPubMedGoogle Scholar
  28. Jackson AR, Hegde VL, Nagarkatti PS, Nagarkatti M (2014) Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. J Leukoc Biol 95:609–619PubMedCentralCrossRefPubMedGoogle Scholar
  29. Katz PS, Sulzer JK, Impastato RA, Teng SX, Rogers EK, Molina P (2014) Endocannabinoid degradation inhibition improves neurobehavioral function, blood brain barrier integrity, and neuroinflammation following mild traumatic brain injury. J Neurotrauma 32:297–306CrossRefPubMedGoogle Scholar
  30. Kishimoto S, Gokoh M, Oka S, Muramatsu M, Kajiwara T, Waku K et al (2003) 2-arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism. J Biol Chem 278:24469–24475CrossRefPubMedGoogle Scholar
  31. Kishimoto S, Muramatsu M, Gokoh M, Oka S, Waku K, Sugiura T (2005) Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. J Biol Chem 137:217–223Google Scholar
  32. Kishimoto S, Oka S, Gokoh M, Sugiura T (2006) Chemotaxis of human peripheral blood eosinophils to 2-arachidonoylglycerol: comparison with other eosinophil chemoattractants. Int Arch Allergy Immunol 140:3–7CrossRefPubMedGoogle Scholar
  33. Kraft B, Kress HG (2005) Indirect CB2 receptor and mediator-dependent stimulation of human whole-blood neutrophils by exogenous and endogenous cannabinoids. J Pharmacol Exp Ther 315:641–647CrossRefPubMedGoogle Scholar
  34. Kreutz S, Koch M, Bottger C, Ghadban C, Korf HW, Dehghani F (2009) 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia 57:286–294CrossRefPubMedGoogle Scholar
  35. Krishnan G, Chatterjee N (2014) Endocannabinoids affect innate immunity of Muller glia during HIV-1 Tat cytotoxicity. Mol Cell Neurosci 59:10–23CrossRefPubMedGoogle Scholar
  36. Kurihara R, Tohyama Y, Matsusaka S, Naruse H, Kinoshita E, Tsujioka T et al (2006) Effects of peripheral cannabinoid receptor ligands on motility and polarization in neutrophil-like HL60 cells and human neutrophils. J Biol Chem 281:12908–12918CrossRefPubMedGoogle Scholar
  37. Lau AH, Chow SS (2003) Effects of cannabinoid receptor agonists on immunologically induced histamine release from rat peritoneal mast cells. Eur J Pharmacol 464:229–235CrossRefPubMedGoogle Scholar
  38. Lee M, Yang KH, Kaminski NE (1995) Effects of putative cannabinoid receptor ligands, anandamide and 2-arachidonyl-glycerol, on immune function in B6C3F1 mouse splenocytes. J Pharmacol Exp Ther 275:529–536PubMedGoogle Scholar
  39. Lenglet S, Thomas A, Soehnlein O, Montecucco F, Burger F, Pelli G et al (2013) Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 33:215–223CrossRefPubMedGoogle Scholar
  40. Lourbopoulos A, Grigoriadis N, Lagoudaki R, Touloumi O, Polyzoidou E, Mavromatis I et al (2011) Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis. Brain Res 16:126–141CrossRefGoogle Scholar
  41. Maestroni GJ (2004) The endogenous cannabinoid 2-arachidonoyl glycerol as in vivo chemoattractant for dendritic cells and adjuvant for Th1 response to a soluble protein. FASEB J 18:1914–1916PubMedGoogle Scholar
  42. Matias I, Pochard P, Orlando P, Salzet M, Pestel J, Di MV (2002) Presence and regulation of the endocannabinoid system in human dendritic cells. Eur J Biochem 269:3771–3778CrossRefPubMedGoogle Scholar
  43. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564Google Scholar
  44. McHugh D, Tanner C, Mechoulam R, Pertwee RG, Ross RA (2008) Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2. Mol Pharmacol 73:441–450CrossRefPubMedGoogle Scholar
  45. McHugh D, Hu SS, Rimmerman N, Juknat A, Vogel Z, Walker JM et al (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44PubMedCentralCrossRefPubMedGoogle Scholar
  46. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90CrossRefPubMedGoogle Scholar
  47. Mestre L, Iñigo PM, Mecha M, Correa FG, Hernangómez-Herrero M, Loría F et al (2011) Anandamide inhibits Theiler’s virus induced VCAM-1 in brain endothelial cells and reduces leukocyte transmigration in a model of blood brain barrier by activation of CB(1) receptors. J Neuroinflammation 8:102PubMedCentralCrossRefPubMedGoogle Scholar
  48. Metcalfe DD, Baram D, Mekori YA (1997) Mast cells. Physiol Rev 77:1033–1079PubMedGoogle Scholar
  49. Mimura T, Oka S, Koshimoto H, Ueda Y, Watanabe Y, Sugiura T (2012) Involvement of the endogenous cannabinoid 2 ligand 2-arachidonyl glycerol in allergic inflammation. Int Arch Allergy Immunol 159:149–156CrossRefPubMedGoogle Scholar
  50. Molina-Holgado F, Lledó A, Guaza C (1997) Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler’s virus or endotoxin in astrocytes. Neuroreport 8:1929–1933CrossRefPubMedGoogle Scholar
  51. Molina-Holgado F, Molina-Holgado E, Guaza C (1998) The endogenous cannabinoid anandamide potentiates interleukin-6 production by astrocytes infected with Theiler’s murine encephalomyelitis virus by a receptor-mediated pathway. FEBS Lett 433:139–142CrossRefPubMedGoogle Scholar
  52. Molina-Holgado F, Molina-Holgado E, Guaza C, Rothwell NJ (2002) Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 67:829–836CrossRefPubMedGoogle Scholar
  53. Montecucco F, Matias I, Lenglet S, Petrosino S, Burger F, Pelli G et al (2009) Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis 205:433–441CrossRefPubMedGoogle Scholar
  54. Navarrete CM, Fiebich BL, de Vinuesa AG, Hess S, de Oliveira AC, Candelario-Jalil E et al (2009) Opposite effects of anandamide and N-arachidonoyl dopamine in the regulation of prostaglandin E and 8-iso-PGF formation in primary glial cells. J Neurochem 109:452–464CrossRefPubMedGoogle Scholar
  55. Oka S, Ikeda S, Kishimoto S, Gokoh M, Yanagimoto S, Waku K et al (2004) 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils. J Leukoc Biol 76:1002–1009CrossRefPubMedGoogle Scholar
  56. Oka S, Yanagimoto S, Ikeda S, Gokoh M, Kishimoto S, Waku K et al (2005) Evidence for the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation in mouse ear. J Biol Chem 280:18488–18497CrossRefPubMedGoogle Scholar
  57. Ortega-Gutiérrez S, Molina-Holgado E, Guaza C (2005) Effect of anandamide uptake inhibition in the production of nitric oxide and in the release of cytokines in astrocyte cultures. Glia 52:163–168CrossRefPubMedGoogle Scholar
  58. Parolaro D, Massi P, Rubino T, Monti E (2002) Endocannabinoids in the immune system and cancer. Prostaglandins Leukot Essent Fatty Acids 66:319–332CrossRefPubMedGoogle Scholar
  59. Piro JR, Benjamin DI, Duerr JM, Pi Y, Gonzales C, Wood KM, Schwartz JW et al (2012) A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep 28:617–623CrossRefGoogle Scholar
  60. Rettori E, De Laurentiis A, Zorrilla Zubilete M, Rettori V, Elverdin JC (2012) Anti-inflammatory effect of the endocannabinoid anandamide in experimental periodontitis and stress in the rat. Neuroimmunomodulation 19:293–303CrossRefPubMedGoogle Scholar
  61. Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Sakai M, Costa-Pinto FA, Palermo-Neto J (2010) Anandamide prior to sensitization increases cell-mediated immunity in mice. Int Immunopharmacol 10:431–439CrossRefPubMedGoogle Scholar
  62. Rockwell CE, Raman P, Kaplan BL, Kaminski NE (2008) A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochem Pharmacol 76:353–361CrossRefPubMedGoogle Scholar
  63. Rossi S, Furlan R, De Chiara V, Muzio L, Musella A, Motta C et al (2011) Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain Behav Immun 25:1242–1248CrossRefPubMedGoogle Scholar
  64. Sanchez Lopez AJ, Roman-Vega L, Ramil TE, Giuffrida A, Garcia-Merino A (2014) Regulation of cannabinoid receptor gene expression and endocannabinoid levels in lymphocyte subsets by IFN-beta: a longitudinal study in multiple sclerosis patients. Clin Exp Immunol 179:119–27CrossRefGoogle Scholar
  65. Schatz AR, Lee M, Condie RB, Pulaski JT, Kaminski NE (1997) Cannabinoid receptors CB1 and CB2: a characterization of expression and adenylate cyclase modulation within the immune system. Toxicol Appl Pharmacol 142:278–287CrossRefPubMedGoogle Scholar
  66. Schwarz H, Blanco FJ, Lotz M (1994) Anandamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. J Neuroimmunol 55:107–115CrossRefPubMedGoogle Scholar
  67. Stefano GB, Bilfinger TV, Rialas CM, Deutsch DG (2000) 2-arachidonyl-glycerol stimulates nitric oxide release from human immune and vascular tissues and invertebrate immunocytes by cannabinoid receptor 1. Pharmacol Res 42:317–322CrossRefPubMedGoogle Scholar
  68. Suárez J, Romero-Zerbo SY, Rivera P, Bermúdez-Silva FJ, Pérez J, De Fonseca FR et al (2010) Endocannabinoid system in the adult rat circumventricular areas: an immunohistochemical study. J Comp Neurol 518:3065–3085CrossRefPubMedGoogle Scholar
  69. Sugamura K, Sugiyama S, Nozaki T, Matsuzawa Y, Izumiya Y, Miyata K et al (2009) Activated endocannabinoid system in coronary artery disease and anti-inflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 119:28–36CrossRefPubMedGoogle Scholar
  70. Sugawara K, Biro T, Tsuruta D, Toth BI, Kromminga A, Zakany N et al (2012) Endocannabinoids limit excessive mast cell maturation and activation in human skin. J Allergy Clin Immunol 129:726–738CrossRefPubMedGoogle Scholar
  71. Sugiura T, Kondo S, Kishimoto S, Miyashita T, Nakane S, Kodaka T et al (2000) Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells. J Biol Chem 275:605–612CrossRefPubMedGoogle Scholar
  72. Valk P, Verbakel S, Vankan Y, Hol S, Mancham S, Ploemacher R et al (1997) Anandamide, a natural ligand for the peripheral cannabinoid receptor is a novel synergistic growth factor for hematopoietic cells. Blood 90:1448–1457PubMedGoogle Scholar
  73. Vannacci A, Zagli G, Marzocca C, Pierpaoli S, Passani MB, Mannaioni PF, Masini E (2002) Down-regulation by cannabinoids of the immunological activation of human basophils and guinea pig mast cells. Inflamm Res 51:S09–S10PubMedGoogle Scholar
  74. Vannacci A, Giannini L, Passani MB, Di FA, Pierpaoli S, Zagli G et al (2004) The endocannabinoid 2-arachidonylglycerol decreases the immunological activation of Guinea pig mast cells: involvement of nitric oxide and eicosanoids. J Pharmacol Exp Ther 311:256–264CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Clinical Laboratory SciencesVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations