Advertisement

Fibrinogen-Related Proteins (FREPs) in Mollusks

  • Coen M. AdemaEmail author
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 57)

Abstract

Anti-parasite responses of the snail Biomphalaria glabrata involve antigen-reactive plasma lectins termed fibrinogen-related proteins (FREPs) comprising a C-terminal fibrinogen (FBG) domain and one or two upstream immunoglobulin domains. FREPs are highly polymorphic; they derive from several gene families with multiple loci and alleles that are diversified by exon loss, alternative splicing, and random somatic mutation (gene conversion and point mutations). Individual B. glabrata snails have dynamically distinct FREP sequence repertoires. The immune relevance of B. glabrata FREPs is indicated by FREP binding to polymorphic antigens of (snail-specific) digenean parasites and altered resistance of B. glabrata to digeneans following RNAi knockdown of FREPs. The compatibility polymorphism hypothesis proposes that FREP mutation increases the range of germline-encoded immune recognition in B. glabrata to counter antigenically-varied parasites. Somatic mutation may result from sequence exchange among tandemly arranged FREP genes in the genome, and analysis of sequence variants also suggests involvement of cytidine deaminase-like activity or epigenetic regulation. Without current indications of selection or retention of effective sequence variants toward immunological memory, FREP diversification is thought to afford B. glabrata immunity that is anticipatory but not adaptive. More remains to be learned about this system; other mollusks elaborate diversified lectins consisting of single FBG domains, and bona fide FREPs were reported from additional gastropod species, but these may not be diversified. Future comparative immunological studies and gene discovery driven by next-generation sequencing will further clarify taxonomic distribution of FREP diversification and the underlying mutator mechanisms as a component of immune function in mollusks.

Keywords

Biomphalaria glabrata Lectins Somatic diversification 

Notes

Acknowledgments

CMA acknowledges support from CETI and NIH grant number P20GM103452 from the National Institute of General Medical Sciences (NIGMS).

References

  1. Adema CM, Loker ES (1997) Specificity and immunobiology of larval digenean-snail associations. In: Fried B, Graczyk TK (eds) Advances in trematode biology. CRC Press, Boca Raton, FL, p 230Google Scholar
  2. Adema CM, Loker ES (2015) Digenean-gastropod host associations reveal foundations of specific immunity in snails. Dev Comp Immunol 48:275–283. doi: 10.1016/j.dci.2014.06.014 CrossRefPubMedGoogle Scholar
  3. Adema CM, Hertel LA, Loker ES (1997a) Infection with Echinostoma paraensei (Digenea) induces parasite-reactive polypeptides in the hemolymph of the gastropod host Biomphalaria glabrata. In: Beckage N (ed) Parasite effects on host physiology and behavior. Chapman Press, New York, p 77Google Scholar
  4. Adema CM, Hertel LA, Miller RD et al (1997b) A family of fibrinogen-related proteins that precipitates parasite-derived molecules is produced by an invertebrate after infection. Proc Natl Acad Sci USA 1997(94):8691–8696CrossRefGoogle Scholar
  5. Adema CM, Hertel LA, Loker ES (1999) Evidence from two planorbid snails of a complex and dedicated response to digenean (echinostome) infection. Parasitology 119:395–404CrossRefPubMedGoogle Scholar
  6. Adema CM, Luo M-Z, Hanelt B et al (2006) A BAC library for Biomphalaria glabrata, intermediate snail host of Schistosoma mansoni. Mem Inst Oswaldo Cruz 101:167–177CrossRefPubMedGoogle Scholar
  7. Adema CM, Hanington PC, Lun CM et al (2010) Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes). Mol Immunol 47:849–860. doi: 10.1016/j.molimm.2009.10.019 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bayne CJ (2009) Successful parasitism of vector snail Biomphalaria glabrata by the human blood fluke (trematode) Schistosoma mansoni: a 2009 assessment. Mol Biochem Parasitol 165:8–18. doi: 10.1016/j.molbiopara.2009.01.005 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Bayne CJ, Buckley PM, DeWan PC (1980a) Macrophagelike hemocytes of resistant Biomphalaria glabrata are cytotoxic for sporocysts of Schistosoma mansoni in vitro. J Parasitol 66:413–419CrossRefPubMedGoogle Scholar
  10. Bayne CJ, Buckley PM, DeWan PC (1980b) Schistosoma mansoni: cytotoxicity of hemocytes from susceptible snail hosts for sporocysts in plasma from resistant Biomphalaria glabrata. Exp Parasitol 50:409–416CrossRefPubMedGoogle Scholar
  11. Boehm T, McCurley N, Sutoh Y et al (2012) VLR-based adaptive immunity. Annu Rev Immunol 30:203–220. doi: 10.1146/annurev-immunol-020711-075038 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Borst P, Rudenko G, Taylor MC et al (1996) Antigenic variation in trypanosomes. Arch Med Res 27:379–388PubMedGoogle Scholar
  13. Bouchut A, Sautiere PE, Coustau C et al (2006) Compatibility in the Biomphalaria glabrata/Echinostoma caproni model: potential involvement of proteins from hemocytes revealed by a proteomic approach. Acta Trop 98:234–246CrossRefPubMedGoogle Scholar
  14. Bransteitter R, Prochnow C, Chen XS (2009) The current structural and functional understanding of APOBEC deaminases. Cell Mol Life Sci 66:3137–3147, PMID: 19547914CrossRefPubMedGoogle Scholar
  15. Bruun B, Aagaard-Hansen J (2008) The social context of Schistosomiasis and its control an introduction and annotated bibliography. World Health Organization, GenevaGoogle Scholar
  16. Chen JM, Cooper DN, Chuzhanova N et al (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762–775CrossRefPubMedGoogle Scholar
  17. Dheilly NM, Adema CM, Raftos DA et al (2014) No more non-model species: the promise of next generation sequencing for comparative immunology. Dev Comp Immunol 45:56–66. doi: 10.1016/j.dci.2014.01.022 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Dheilly NM, Duval D, Mouahid G et al (2015) A family of variable immunoglobulin and lectin domain containing molecules in the snail Biomphalaria glabrata. Dev Comp Immunol 48:234–243. doi: 10.1016/j.dci.2014.10.009 CrossRefPubMedGoogle Scholar
  19. Erwin DH, Laflamme M, Tweedt SM et al (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097. doi: 10.1126/science.1206375 CrossRefPubMedGoogle Scholar
  20. Esch GW, Barger MA, Fellis KJ (2002) The transmission of digenetic trematodes: style, elegance, complexity. Integr Comp Biol 42:304–312. doi: 10.1093/icb/42.2.304 CrossRefPubMedGoogle Scholar
  21. Fneich S, Dheilly N, Adema CM et al (2013) 5-methyl-cytosine and 5-hydroxy-methyl-cytosine in the genome of Biomphalaria glabrata, a snail intermediate host of Schistosoma mansoni. Parasit Vectors 6:167. doi: 10.1186/1756-3305-6-167 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483. doi: 10.1186/1471-2164-11-483
  23. Geyer KK, Rodríguez López CM, Chalmers IW et al (2011) Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni. Nat Commun 9(2):424. doi: 10.1038/ncomms1433 CrossRefGoogle Scholar
  24. Ghosh J, Lun CM, Majeske AJ et al (2011) Invertebrate immune diversity. Dev Comp Immunol 35:959–74. doi: 10.1016/j.dci.2010.12.009 CrossRefPubMedGoogle Scholar
  25. Gorbushin AM, Borisova EA (2015) Lectin-like molecules in transcriptome of Littorina littorea hemocytes. Dev Comp Immunol 48:210–20. doi: 10.1016/j.dci.2014.10.007 CrossRefPubMedGoogle Scholar
  26. Gorbushin AM, Iakovleva NV (2011) A new gene family of single fibrinogen domain lectins in Mytilus. Fish Shellfish Immunol 30(1):434–438. doi: 10.1016/j.fsi.2010.10.002 CrossRefPubMedGoogle Scholar
  27. Gorbushin AM, Panchin YV, Iakovleva NV (2010) In search of the origin of FREPs: characterization of Aplysia californica fibrinogen-related proteins. Dev Comp Immunol 34:465–473. doi: 10.1016/j.dci.2009.12.007 CrossRefPubMedGoogle Scholar
  28. Hanington PC, Forys MA, Dragoo JW et al (2010) Role for a somatically diversified lectin in resistance of an invertebrate to parasite infection. Proc Natl Acad Sci USA 107:21087–21092. doi: 10.1073/pnas.1011242107 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Hanington PC, Forys MA, Loker ES (2012) A somatically diversified defense factor, FREP3, is a determinant of snail resistance to schistosome infection. PLoS Negl Trop Dis 6, e1591. doi: 10.1371/journal.pntd.0001591 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Hertel LA, Stricker SA, Monroy FP et al (1994) Biomphalaria glabrata hemolymph lectins: binding to bacteria, mammalian erythrocytes, and to sporocysts and rediae of Echinostoma paraensei. J Invertebr Pathol 64:52–61CrossRefPubMedGoogle Scholar
  31. Hetru C, Hoffmann JA (2009) NF-kappaB in the immune response of Drosophila. Cold Spring Harb Perspect Biol 1:a000232. doi: 10.1101/cshperspect.a000232 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Horak P, van der Knaap WPW (1997) Lectins in snail – trematode immune interactions: a review. Folia Parasitol (Praha) 44:161–172Google Scholar
  33. Huang B, Zhang L, Li L et al (2015) Highly diverse fibrinogen-related proteins in the Pacific oyster Crassostrea gigas. Fish Shellfish Immunol 43(2):485–490. doi: 10.1016/j.fsi.2015.01.021, pii: S1050-4648(15)00035-2CrossRefPubMedGoogle Scholar
  34. Jiang Y, Loker ES, Zhang SM (2006) In vivo and in vitro knockdown of FREP2 gene expression in the snail Biomphalaria glabrata using RNA interference. Dev Comp Immunol 30:855–866PubMedCentralCrossRefPubMedGoogle Scholar
  35. Klein J (1989) Are invertebrates capable of anticipatory immune responses? Scand J Immunol 29:499–505. doi: 10.1111/j.1365-3083.1989.tb01152.x CrossRefPubMedGoogle Scholar
  36. Kocot KM, Cannon JT, Todt C et al (2011) Phylogenomics reveals deep molluscan relationships. Nature 477:452–456. doi: 10.1038/nature10382 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Kühn K, Bertling WM, Emmrich F (1993) Cloning of a functional cDNA for human cytidine deaminase (CDD) and its use as a marker of monocyte/macrophage differentiation. Biochem Biophys Res Commun 15:1–7CrossRefGoogle Scholar
  38. Kurachi S, Song Z, Takagaki M et al (1998) Sialic-acid-binding lectin from the slug Limax flavus–cloning, expression of the polypeptide, and tissue localization. Eur J Biochem 254:217–222CrossRefPubMedGoogle Scholar
  39. Langand J, Morand S (1998) Heritable non-susceptibility in an allopatric host-parasite system: Biomphalaria glabrata (Mollusca)-Echinostoma caproni (platyhelminth Digenea). J Parasitol 84:739–742CrossRefPubMedGoogle Scholar
  40. Larijani M, Petrov AP, Kolenchenko O et al (2007) AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence independent manner. Mol Cell Biol 27:20–30PubMedCentralCrossRefPubMedGoogle Scholar
  41. Léonard PM, Adema CM, Zhang SM et al (2001) Structure of two FREP genes that combine IgSF and fibrinogen domains, with comments on diversity of the FREP gene family in the snail Biomphalaria glabrata. Gene 269:155–165CrossRefPubMedGoogle Scholar
  42. Lie KJ, Heyneman D (1979) Acquired resistance to echinostomes in four Biomphalaria glabrata strains. Int J Parasitol 9:533–537CrossRefPubMedGoogle Scholar
  43. Lie KJ, Heyneman D, Lim HK (1975a) Studies on resistance in snails: specific resistance induced by irradiated miracidia of Echinostoma lindoense in Biomphalaria glabrata snails. Int J Parasitol 5:627–631CrossRefPubMedGoogle Scholar
  44. Lie KJ, Heyneman D, Yau D (1975b) The origin of amoebocytes in Biomphalaria glabrata. J Parasitol 61:574–576CrossRefGoogle Scholar
  45. Lie JK, Heyneman D, Jeong KH (1976) Studies on resistance in snails. 4. Induction of ventricular capsules and changes in the amebocyte-producing organ during sensitization of Biomphalaria glabrata snails. J Parasitol 62:286–291CrossRefPubMedGoogle Scholar
  46. Lockyer AE, Spinks J, Kane RA et al (2008) Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni. BMC Genomics 9:634. doi: 10.1186/1471-2164-9-634 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Lockyer AE, Emery AM, Kane RA et al (2012) Early differential gene expression in haemocytes from resistant and susceptible Biomphalaria glabrata strains in response to Schistosoma mansoni. PLoS One 7(12), e51102PubMedCentralCrossRefPubMedGoogle Scholar
  48. Marchalonis JJ, Schluter SF (1990) Origins of Immunoglobulins and Immune Recognition Molecules. BioScience 40:758–768CrossRefGoogle Scholar
  49. Medzhitov R, Janeway CA (1997) Innate immunity: the virtues of a non-clonal system of recognition. Cell 91:295–298CrossRefPubMedGoogle Scholar
  50. Mitta G, Adema CM, Gourbal B et al (2012) Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms. Dev Comp Immunol 37:1–8. doi: 10.1016/j.dci.2011.09.002 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Moné Y, Gourbal B, Duval D et al (2010) A large repertoire of parasite epitopes matched by a large repertoire of host immune receptors in an invertebrate host/parasite model. PLoS Negl Trop Dis 4. pii: e813. doi: 10.1371/journal.pntd.0000813.
  52. Monroy FP, Loker ES (1993) Production of heterogeneous carbohydrate-binding proteins by the host snail Biomphalaria glabrata following exposure to Echinostoma paraensei and Schistosoma mansoni. J Parasitol 79(3):416–423CrossRefPubMedGoogle Scholar
  53. Monroy F, Hertel LA, Loker ES (1992) Carbohydrate-binding plasma proteins from the gastropod Biomphalaria glabrata: strain specificity and the effects of trematode infection. Dev Comp Immunol 16:355–366CrossRefPubMedGoogle Scholar
  54. Richards EH, Renwrantz LR (1991) Two lectins on the surface of Helix pomatia haemocytes: a Ca2 + -dependent, GalNac-specific lectin and a Ca2 + -independent, mannose 6-phosphate-specific lectin which recognises activated homologous opsonins. J Comp Physiol B 161:43–54CrossRefGoogle Scholar
  55. Richards CS, Knight M, Lewis FA (1992) Genetics of Biomphalaria glabrata and its effect on the outcome of Schistosoma mansoni infection. Parasitol Today 8:171–174CrossRefPubMedGoogle Scholar
  56. Roger E, Grunau C, Pierce RJ et al (2008) Controlled chaos of polymorphic mucins in a metazoan parasite (Schistosoma mansoni) interacting with its invertebrate host (Biomphalaria glabrata). PLoS Negl Trop Dis 2(11), e330. doi: 10.1371/journal.pntd.0000330 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Rogozin IB, Iyer LM, Liang L et al (2007) Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AIDAPOBEC family cytosine deaminase. Nat Immunol 8:647–656CrossRefPubMedGoogle Scholar
  58. Romero A, Dios S, Poisa-Beiro L et al (2011) Individual sequence variability and functional activities of fibrinogen-related proteins (FREPs) in the Mediterranean mussel (Mytilus galloprovincialis) suggest ancient and complex immune recognition models in invertebrates. Dev Comp Immunol 35:334–344. doi: 10.1016/j.dci.2010.10.007 CrossRefPubMedGoogle Scholar
  59. Stout BA, Adema CM, Zhang S-M et al (2009) The biology of FREPs: diversified lectins with fibrinogen-related domains from the freshwater snail Biomphalaria glabrata. In: Vasta G, Ahmed H (eds) Animal lectins: a functional view. CRC Press and Taylor & Francis, Boca Raton, FL, p 475Google Scholar
  60. Théron A, Coustau C (2005) Are Biomphalaria snails resistant to Schistosoma mansoni? J Helminthol 79:187–191CrossRefPubMedGoogle Scholar
  61. Tran TH, Nakata M, Suzuki K et al (2010) B cell-specific and stimulation-responsive enhancers depress AICDA by overcoming the effects of silencers. Nat Immunol 11:148–154CrossRefPubMedGoogle Scholar
  62. Wang X, Zhao Q, Christensen BM (2005) Identification and characterization of the fibrinogen-like domain of fibrinogen-related proteins in the mosquito, Anopheles gambiae, and the fruitfly, Drosophila melanogaster, genomes. BMC Genomics 6:114PubMedCentralCrossRefPubMedGoogle Scholar
  63. Yang C, Wang L, Zhang H et al (2014) A new fibrinogen-related protein from Argopecten irradians (AiFREP-2) with broad recognition spectrum and bacteria agglutination activity. Fish Shellfish Immunol 38:221–229. doi: 10.1016/j.fsi.2014.03.025 CrossRefPubMedGoogle Scholar
  64. Zhang SM, Loker ES (2003) The FREP gene family in the snail Biomphalaria glabrata: additional members, and evidence consistent with alternative splicing and FREP retrosequences. Dev Comp Immunol 27:175–187CrossRefPubMedGoogle Scholar
  65. Zhang SM, Loker ES (2004) Representation of an immune responsive gene family encoding fibrinogen-related proteins in the freshwater mollusc Biomphalaria glabrata, an intermediate host for Schistosoma mansoni. Gene 341:255–266PubMedCentralCrossRefPubMedGoogle Scholar
  66. Zhang SM, Léonard PM, Adema CM et al (2001) Parasite-responsive IgSF members in the snail Biomphalaria glabrata: characterization of novel genes with tandemly arranged IgSF domains and a fibrinogen domain. Immunogenetics 53:684–694CrossRefPubMedGoogle Scholar
  67. Zhang SM, Adema CM, Kepler TB et al (2004) Diversification of Ig superfamily genes in an invertebrate. Science 305:251–254CrossRefPubMedGoogle Scholar
  68. Zhang H, Wang L, Song L et al (2008a) A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor. Fish Shellfish Immunol 26:56–64. doi: 10.1016/j.fsi.2008.07.019 CrossRefPubMedGoogle Scholar
  69. Zhang SM, Nian H, Zeng Y et al (2008b) Fibrinogen-bearing protein genes in the snail Biomphalaria glabrata: characterization of two novel genes and expression studies during ontogenesis and trematode infection. Dev Comp Immunol 32:1119–1130. doi: 10.1016/j.dci.2008.03.001 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Zhang LL, Li L, Zhang GF (2012) Sequence variability of fibrinogen-related proteins (FREPs) in Crassostrea gigas. Chin Sci Bull 57:3312–3319. doi: 10.1007/s11434-012-5155-6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Biology DepartmentCenter for Evolutionary and Theoretical Immunology, University of New MexicoAlbuquerqueUSA

Personalised recommendations