Brain-in-the-Loop Learning Using fNIR and Simulated Virtual Reality Surgical Tasks: Hemodynamic and Behavioral Effects

  • Patricia A. Shewokis
  • Hasan Ayaz
  • Lucian Panait
  • Yichuan Liu
  • Mashaal Syed
  • Lawrence Greenawald
  • Faiz U. Shariff
  • Andres Castellanos
  • D. Scott Lind
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)

Abstract

Functional near infrared spectroscopy (fNIR) is a noninvasive, portable optical imaging tool to monitor changes in hemodynamic responses (i.e., oxygenated hemoglobin (HbO)) within the prefrontal cortex (PFC) in response to sensory, motor or cognitive activation. We used fNIR for monitoring PFC activation during learning of simulated laparoscopic surgical tasks throughout 4 days of training and testing. Blocked (BLK) and random (RND) practice orders were used to test the practice schedule effect on behavioral, hemodynamic responses and relative neural efficiency (EFFrel-neural) measures during transfer. Left and right PFC for both tasks showed significant differences with RND using less HbO than BLK. Cognitive workload showed RND exhibiting high EFFrel-neural across the PFC for the coordination task while the more difficult cholecystectomy task showed EFFrel-neural differences only in the left PFC. Use of brain activation, behavioral and EFFrel-neural measures can provide a more accurate depiction of the generalization or transfer of learning.

Keywords

Cognitive effort and learning fNIR Simulation Virtual reality Transfer Brain sensors and measures Contextual interference 

Notes

Acknowledgement

This study was funded in part under a Drexel University College of Medicine and International Blue Cross Seed Grant #1312002473 (Panait, PI) and National Science Foundation (NSF) grant IIS: 1064871 (Shewokis, PI).

References

  1. 1.
    Chance, B., Zhuang, Z., UnAh, C., Alter, C., Lipton, L.: Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 90, 3770–3774 (1993)CrossRefGoogle Scholar
  2. 2.
    Strangman, G., Boas, D.A., Sutton, P.J.: Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 52, 679–693 (2002)CrossRefGoogle Scholar
  3. 3.
    Chance, B., Villringer, A.: Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997)CrossRefGoogle Scholar
  4. 4.
    Ayaz, H., Shewokis, P.A., Bunce, S., Izzetoglu, K., Willems, B., Onaral, B.: Optical brain monitoring for operator training and mental workload assessment. Neuroimage 59, 36–47 (2012)CrossRefGoogle Scholar
  5. 5.
    Shewokis, P.A., Ayaz, H., Izzetoglu, M., Bunce, S., Gentili, R.J., Sela, I., Izzetoglu, K., Onaral, B.: Brain in the loop: assessing learning using fnir in cognitive and motor tasks. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) FAC 2011. LNCS, vol. 6780, pp. 240–249. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Gentili, R.J., Shewokis, P.A., Ayaz, H., Contreras-Vidal, J.L.: Functional near-infrared spectroscopy-based correlates of prefrontal cortical dynamics during a cognitive-motor executive adaptation task. Front. Hum. Neurosci. 7, 1–13 (2013). doi:10.3389/fnhum.2013.00277 CrossRefGoogle Scholar
  7. 7.
    Procyk, E., Goldman-Rakic, P.S.: Modulation of dorsolateral prefrontal delay activity during self-organized behavior. J. Neurosci. 26, 11313–11323 (2006)CrossRefGoogle Scholar
  8. 8.
    Paas, F., Tuovinen, J., Tabbers, H., Van Gerven, P.W.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38, 63–71 (2003)CrossRefGoogle Scholar
  9. 9.
    Paas, F., van Merrienboer, J.J.G.: The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Hum. Factors 35, 737–743 (1993)Google Scholar
  10. 10.
    Sweller, J., van Merrienboer, J.J.G., Paas, F.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10, 251–296 (1998)CrossRefGoogle Scholar
  11. 11.
    Osborne, M.P.: William Stewart Halsted: his life and contributions to surgery. Lancet Oncol. 8, 256–265 (2007)CrossRefGoogle Scholar
  12. 12.
    Cox, M., Irby, D.M., Reznick, R.K., MacRae, H.: Medical education: teaching surgical skills – changes in the wind. N. Engl. J. Med. 355, 2664–2669 (2006)CrossRefGoogle Scholar
  13. 13.
    Lossing, A.G., Hatswell, E.M., Gilas, T., Reznick, R.K., Smith, L.C.: A technical-skills course for 1st-year residents in general surgery: a descriptive study. Can. J. Surg. 35(5), 536–540 (1992)Google Scholar
  14. 14.
    Bridges, M., Diamond, D.L.: The financial impact of teaching surgical residents in the operating room. Am. J. Surg. 177, 28–32 (1999)CrossRefMATHGoogle Scholar
  15. 15.
    Stefanidis, D., Sevdalis, N., Paige, J., Zevin, B., Aggarwal, R., Grantcharov, T., Jones, D.B.: Simulation in surgery: what’s needed next? Ann. Surg. 261, 1–8 (2014)Google Scholar
  16. 16.
    Magill, R.A., Hall, K.G.: A review of the contextual interference effect in motor skill acquisition. Hum. Mov. Sci. 9, 241–289 (1990)CrossRefGoogle Scholar
  17. 17.
    Shewokis, P.A.: Memory consolidation and contextual interference effects with computer games. Percept. Mot. Skills 97, 581–589 (2003)CrossRefGoogle Scholar
  18. 18.
    Ayaz, H., Shewokis, P.A., Curtin, A., Izzetoglu, M., Izzetoglu, K., Onaral, B.: Using MazeSuite and functional near infrared spectroscopy to study learning in spatial navigation. J. Vis. Exp. 56, 1–12 (2011)Google Scholar
  19. 19.
    Palter, V.N., Orzech, N., Reznick, R.K., Grantcharov, T.P.: Validation of a structured training and assessment curriculum for technical skill acquisition in minimally invasive surgery a randomized controlled trial. Ann. Surg. 257, 224–230 (2013)CrossRefGoogle Scholar
  20. 20.
    Ayaz, H., Izzetoglu, M., Platek, S.M., Bunce, S., Izzetoglu, K., Pourezaei, K., Onaral, B.: Registering fNIR data to brain surface image using MRI templates. In: 28th IEEE EMBS Annual International Conference, pp. 2671−2674, New York City (2006)Google Scholar
  21. 21.
    Ayaz, H., Izzetoglu, M., Shewokis, P.A., Onaral, B.: Sliding-window motion artifact rejection for functional near-infrared spectroscopy. In: 32nd Annual International Conference of the IEEE EMBS, pp. 6567–6570, Buenos Aires, Argentina (2010)Google Scholar
  22. 22.
    Ayaz, H., Çakır, M.P., Izzetoglu, K., Curtin, A., Shewokis, P.A., Bunce, S., Onaral, B.: Monitoring Expertise Development during Simulated UAV Piloting Tasks using Optical Brain Imaging. In: 2012 IEEE Aerosp Conference, pp. 1–11, Big Sky, Montana (2012)Google Scholar
  23. 23.
    Wymbs, N.F., Grafton, S.T.: Neural substrates of practice structure that support future off-line learning. J. Neurophysiol. 102, 2462–2476 (2009)CrossRefGoogle Scholar
  24. 24.
    Hatakenaka, M., Miyai, I., Mihara, M., Sakoda, S., Kubota, K.: Frontal regions involved in learning of motor skill - A functional NIRS study. Neuroimage 34, 109–116 (2007)CrossRefGoogle Scholar
  25. 25.
    Leff, D.R., Elwell, C.E., Orihuela-Espina, F., Atallah, L., Delpy, D.T., Darzi, A.W., Yang, G.Z.: Changes in prefrontal cortical behaviour depend upon familiarity on a bimanual co-ordination task: An fNIRS study. Neuroimage 39, 805–813 (2008)CrossRefGoogle Scholar
  26. 26.
    Shewokis, P.A., Ayaz, H., Curtin, A., Izzetoglu, K., Onaral, B.: Brain in the loop learning using functional near infrared spectroscopy. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2013. LNCS, vol. 8027, pp. 381–389. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  27. 27.
    Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P.A., McKendrick, R., Parasuraman, R.: Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Front. Hum. Neurosci. 7, 1–13 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Patricia A. Shewokis
    • 1
    • 2
    • 3
    • 4
  • Hasan Ayaz
    • 1
    • 2
  • Lucian Panait
    • 3
  • Yichuan Liu
    • 1
    • 2
  • Mashaal Syed
    • 1
    • 2
  • Lawrence Greenawald
    • 3
  • Faiz U. Shariff
    • 3
  • Andres Castellanos
    • 3
  • D. Scott Lind
    • 3
  1. 1.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Cognitive Neuroengineering and Quantitative Experimental Research (CONQUER) CollaborativeDrexel UniversityPhiladelphiaUSA
  3. 3.Department of Surgery, College of MedicineDrexel UniversityPhiladelphiaUSA
  4. 4.Nutrition Sciences Department, College of Nursing and Health ProfessionsDrexel UniversityPhiladelphiaUSA

Personalised recommendations