Relevant HCI for Hybrid BCI and Severely Impaired Patients

  • José Rouillard
  • Alban Duprès
  • François Cabestaing
  • Marie-Hélène Bekaert
  • Charlotte Piau
  • Christopher Coat
  • Jean-Marc Vannobel
  • Claudine Lecocq
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9183)

Abstract

In this paper, we are studying the possibility to enhance the relevance of hybrid Brain-Computer Interfaces for severely impaired patients by improving the relevance of Human-Computer Interfaces. Across virtual reality tools and serious games approaches, we believe that users will be more able to understand how to interact with such kind of interactive systems.

Keywords

Human-computer interaction BCI Hybrid BCI Handicap Virtual reality 

References

  1. 1.
    Vidal, J.J.: Toward direct brain-computer communication. Ann. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)CrossRefGoogle Scholar
  2. 2.
    Moser, H.: Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. Hum. Genet. 66(1), 17–40 (1984)CrossRefGoogle Scholar
  3. 3.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  4. 4.
    Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)CrossRefGoogle Scholar
  5. 5.
    Bermudez i Badia, S., Garcia Morgade, A., Samaha, H., Verschure, P.F.M.J.: Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(2), 174–181 (2013)Google Scholar
  6. 6.
    Power, S.D.: Toward an optical brain-computer interface based on consciously-modulated prefrontal hemodynamic activity. Doctoral dissertation, University of Toronto (2012)Google Scholar
  7. 7.
    Uhlhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11(2), 100–113 (2010)CrossRefGoogle Scholar
  8. 8.
    Keizer, A.W., Verschoor, M., Verment, R.S., Hommel, B.: The effect of gamma enhancing neurofeedback on the control of feature bindings and intelligence measures. Int. J. Psychophysiol. 75(1), 25–32 (2010)CrossRefGoogle Scholar
  9. 9.
    McCarthy-Jones, S.: Taking back the brain: could neurofeedback training be effective for relieving distressing auditory verbal hallucinations in patients with schizophrenia?. Schizophrenia bulletin, sbs006 (2012)Google Scholar
  10. 10.
    Escher, S., Romme, M., Buiks, A., Delespaul, P., Van Os, J.I.M.: Independent course of childhood auditory hallucinations: a sequential 3-year follow-up study. Br. J. Psychiatry 181(43), s10–s18 (2002)CrossRefGoogle Scholar
  11. 11.
    Green, M.F., Kinsbourne, M.: Subvocal activity and auditory hallucinations: Clues for behavioral treatments? Schizophr. Bull. 16(4), 617 (1990)CrossRefGoogle Scholar
  12. 12.
    Leeb, R., Sagha, H., Chavarriaga, R., del R Millan, J.: Multimodal fusion of muscle and brain signals for a hybrid-BCI. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 4343–4346 (2010)Google Scholar
  13. 13.
    Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four easy pieces for assessing the usability of multimodal interaction: the CARE properties. InterAct 95, 115–120 (1995)Google Scholar
  14. 14.
    Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 55–61, ACM (2001)Google Scholar
  15. 15.
    Pfurtscheller, G., Aranibar, A.: Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr. Clin. Neurophysiol. 42(6), 817–826 (1977)CrossRefGoogle Scholar
  16. 16.
    Derambure, Ph, Defebvre, L., Bourriez, J.L., Cassim, F., Guieu, J.D.: Désynchronisation et synchronisation liées à l’évènement. Etude de la réactivité des rythmes électrocorticaux en relation avec la planification et l’évolution du mouvement volontaire. Neurophysiol. Clin. 29, 53–70 (1999)CrossRefGoogle Scholar
  17. 17.
    Bouche, P.: Electromyographie clinique. EMC – Neurol. 5(3), 1–32 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Labarre-Vila, A.: Électromyographie de surface et fonction musculaire en pathologie. Revue Neurologique 162(4), 459–465 (2006)CrossRefGoogle Scholar
  19. 19.
    Lindeman, E., Spaans, F., Reulen, J.P., Leffers, P., Drukker, J.: Surface EMG of proximal leg muscles in neuromuscular patients and in healthy controls. Relations to force and fatigue. J. Electromyogr. Kinesiol. 9(5), 299–307 (1999)CrossRefGoogle Scholar
  20. 20.
    Yiu, E.M., Kornberg, A.J.: Duchenne muscular dystrophy. Neurology India. 56(3), 236–247 (2008)CrossRefGoogle Scholar
  21. 21.
    Zalewska, E., Hausmanowa-Petrusewicz, I.: Global and detailed features of motor unit potential in myogenic and neurogenic disorders. Med. Eng. Phys. 21(6), 421–429 (1999)CrossRefGoogle Scholar
  22. 22.
    Sonoo, M., Stålberg, E.: The ability of MUP parameters to discriminate between normal and neurogenic MUPs in concentric EMG: analysis of the MUP “thickness” and the proposal of “size index”. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 89(5), 291–303 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José Rouillard
    • 1
  • Alban Duprès
    • 1
  • François Cabestaing
    • 1
  • Marie-Hélène Bekaert
    • 1
  • Charlotte Piau
    • 1
  • Christopher Coat
    • 1
  • Jean-Marc Vannobel
    • 1
  • Claudine Lecocq
    • 1
  1. 1.CRIStAL LaboratoryUniversity of LilleVilleneuve D’Ascq CedexFrance

Personalised recommendations