European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty

ECSQARU 2015: Symbolic and Quantitative Approaches to Reasoning with Uncertainty pp 83-92 | Cite as

Explaining Bayesian Networks Using Argumentation

  • Sjoerd T. TimmerEmail author
  • John-Jules Ch. Meyer
  • Henry Prakken
  • Silja Renooij
  • Bart Verheij
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9161)


Qualitative and quantitative systems to deal with uncertainty coexist. Bayesian networks are a well known tool in probabilistic reasoning. For non-statistical experts, however, Bayesian networks may be hard to interpret. Especially since the inner workings of Bayesian networks are complicated they may appear as black box models. Argumentation models, on the contrary, emphasise the derivation of results. However, they have notorious difficulty dealing with probabilities. In this paper we formalise a two-phase method to extract probabilistically supported arguments from a Bayesian network. First, from a BN we construct a support graph, and, second, given a set of observations we build arguments from that support graph. Such arguments can facilitate the correct interpretation and explanation of the evidence modelled in the Bayesian network.


Bayesian networks Argumentation Reasoning Explanation Inference Uncertainty 


  1. 1.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Keppens, J.: Argument diagram extraction from evidential Bayesian networks. Artif. Intell. Law 20(2), 109–143 (2012)CrossRefGoogle Scholar
  3. 3.
    Koiter, J.R.: Visualizing inference in Bayesian networks. Master’s thesis, Delft University of Technology (2006)Google Scholar
  4. 4.
    Lacave, C., Díez, F.J.: A review of explanation methods for Bayesian networks. Know. Eng. Rev. 17(2), 107–127 (2002)Google Scholar
  5. 5.
    Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)zbMATHGoogle Scholar
  7. 7.
    Pollock, J.L.: Justification and defeat. Artif. Intell. 67, 377–407 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 53(2), 125–157 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Taroni, F., Aitken, C., Garbolino, P., Biedermann, A.: Bayesian Networks and Probabilistic Inference in Forensic Science. Wiley, Chichester (2006)CrossRefzbMATHGoogle Scholar
  10. 10.
    Timmer, S.T., Meyer, J.-J.C., Prakken, H., Renooij, S., Verheij, B.: Extracting legal arguments from forensic Bayesian networks. In: Hoekstra, R. (ed.) Legal Knowledge and Information Systems. JURIX 2014: The Twenty-Seventh Annual Conference, vol. 217, pp. 71–80 (2014)Google Scholar
  11. 11.
    Timmer, S.T., Meyer, J.-J.C., Prakken, H., Renooij, S., Verheij, B.: A structure-guided approach to capturing Bayesian reasoning about legal evidence in argumentation. In: Proceedings of the 15th International Conference on AI and Law (2015)Google Scholar
  12. 12.
    van Eemeren, F.H., Garssen, B., Krabbe, E.C.W., Henkemans, A.F.S., Verheij, B., Wagemans, J.H.M.: Handbook of Argumentation Theory. Springer, Dordrecht (2014)CrossRefGoogle Scholar
  13. 13.
    Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of the Sixth Annual Conference on Uncertainty in Artificial Intelligence, UAI 1990, pp. 255–270. Elsevier Science Inc., New York (1991)Google Scholar
  14. 14.
    Vreeswijk, G.A.W.: Abstract argumentation systems. Artif. Intell. 90(1), 225–279 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sjoerd T. Timmer
    • 1
    Email author
  • John-Jules Ch. Meyer
    • 1
  • Henry Prakken
    • 1
    • 2
  • Silja Renooij
    • 1
  • Bart Verheij
    • 3
  1. 1.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.Faculty of LawUniversity of GroningenGroningenThe Netherlands
  3. 3.Artificial Intelligence InstituteUniversity of GroningenGroningenThe Netherlands

Personalised recommendations