European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty

ECSQARU 2015: Symbolic and Quantitative Approaches to Reasoning with Uncertainty pp 419-428 | Cite as

Dynamic Time Warping Distance for Message Propagation Classification in Twitter

  • Siwar Jendoubi
  • Arnaud Martin
  • Ludovic Liétard
  • Boutheina Ben Yaghlane
  • Hend Ben Hadji
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9161)

Abstract

Social messages classification is a research domain that has attracted the attention of many researchers in these last years. Indeed, the social message is different from ordinary text because it has some special characteristics like its shortness. Then the development of new approaches for the processing of the social message is now essential to make its classification more efficient. In this paper, we are mainly interested in the classification of social messages based on their spreading on online social networks (OSN). We proposed a new distance metric based on the Dynamic Time Warping distance and we use it with the probabilistic and the evidential k Nearest Neighbors (k-NN) classifiers to classify propagation networks (PrNets) of messages. The propagation network is a directed acyclic graph (DAG) that is used to record propagation traces of the message, the traversed links and their types. We tested the proposed metric with the chosen k-NN classifiers on real world propagation traces that were collected from Twitter social network and we got good classification accuracies.

Keywords

Propagation Network (PrNet) Classification Dynamic Time Warping (DTW) k Nearest Neighbor (k-NN) 

Notes

Acknowledgement

These research works and innovation are carried out within the framework of the device MOBIDOC financed by the European Union under the PASRI program and administrated by the ANPR. Also, we thank the “Centre d’Etude et de Recherche des Télécommunications” (CERT) for their support.

References

  1. 1.
    Aregui, A., Denœux, T.: Fusion of one-class classifiers in the belief function framework. In: Proceedings of FUSION, Québec, Canada, Juillet 2007Google Scholar
  2. 2.
    Aregui, A., Denoeux, T.: Constructing consonant belief functions from sample data using confidence sets of pignistic probabilities. Int. J. Approximate Reasoning 49(3), 575–594 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Banerjee, S., Ramanathan, K., Gupta, A.: Clustering short texts using wikipedia. In: Proceedings of ACM SIGIR Conference, pp. 787–788. ACM (2007)Google Scholar
  4. 4.
    Ben Jabeur, L.: Leveraging social relevance: Using social networks to enhance literature access and microblog search. Ph.D. thesis, Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier), October 2013Google Scholar
  5. 5.
    Bhatia, N.: Vandana: Survey of nearest neighbor techniques. IJCSIS 8(2), 302–305 (2010)Google Scholar
  6. 6.
    Bunke, H., Foggia, P., Guidobaldi, C., Sansone, C., Vento, M.: A comparison of algorithms for maximum common subgraph on randomly connected graphs. In: Caelli, T., Amin, A., Duin, R.P.W., de Ridder, D., Kamel, M. (eds.) SSSPR 2002. LNCS, vol. 2396, pp. 123–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dempster, A.P.: Upper and Lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Denœux, T.: A \(k\)-nearest neighbor classification rule based on dempster-shafer theory. IEEE Trans. Syst., Man, Cybern.- Part A: Syst. Hum. 25(5), 804–813 (1995)Google Scholar
  9. 9.
    Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Int. J. Future Comput. Commun. 13(1), 113–129 (2010)MathSciNetGoogle Scholar
  10. 10.
    He, W., Zhab, S., Li, L.: Social media competitive analysis and text mining: A case study in the pizza industry. Int. J. Inf. Manage. 33, 464–472 (2013)CrossRefGoogle Scholar
  11. 11.
    Hu, X., Sun, N., Zhang, C., Chua, T.S.: Exploiting internal and external semantics for the clustering of short texts using world knowledge. In: Proceedings of CIKM, pp. 919–928. ACM (2009)Google Scholar
  12. 12.
    Jendoubi, S., Martin, A., Liétard, L., Ben Yaghlane, B.: Classification of message spreading in a heterogeneous social network. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 66–75. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Lo, Y.W., Potdar, V.: A review of opinion mining and sentiment classification framework in social networks. In: Proceedings of DEST 2009, June 2009Google Scholar
  14. 14.
    Mostafa, M.M.: More than words: social networks text mining for consumer brand sentiments. Expert Syst. Appl. 40, 4241–4251 (2013)CrossRefGoogle Scholar
  15. 15.
    Othman, M., Hassan, H., Moawad, R., El-Korany, A.: Opinion mining and sentimental analysis approaches: a survey. Life Sci. J. 11(4), 321–326 (2014)Google Scholar
  16. 16.
    Petitjean, F., Inglada, J., Gancarski, P.: Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 50(8), 3081–3095 (2012)CrossRefGoogle Scholar
  17. 17.
    Phan, X.H., Nguyen, L.M., Horiguchi, S.: Learning to classify short and sparse text and web with hidden topics from large-scale data collections. In: Proceedings of WWW 2009, pp. 91–100. ACM (2009)Google Scholar
  18. 18.
    Sakoe, H., Chiba, S.: A dynamic programming approach to continuous speech recognition. In: Proceedings of the Seventh International Congress on Acoustics, Budapest, vol. 3, pp. 65–69 (1971)Google Scholar
  19. 19.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)CrossRefGoogle Scholar
  20. 20.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)MATHGoogle Scholar
  21. 21.
    Smets, P.: The Combination of evidence in the transferable belief model. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 447–458 (1990)CrossRefGoogle Scholar
  22. 22.
    Smets, P.: Belief functions: the disjunctive rule of combination and the generalized bayesian theorem. Int. J. Approximate Reasoning 9, 1–35 (1993)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Smets, P.: Data fusion in the tranferable belief model. In: Proceedings of FUSION, Paris, France, vol. 1, pp. 21–33, (2000)Google Scholar
  24. 24.
    Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. Int. J. Approximate Reasonning 38, 133–147 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: Proceedings of ACM SIGIR, pp. 841–842. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Siwar Jendoubi
    • 1
    • 2
    • 4
  • Arnaud Martin
    • 2
  • Ludovic Liétard
    • 2
  • Boutheina Ben Yaghlane
    • 3
  • Hend Ben Hadji
    • 4
  1. 1.LARODEC, ISG TunisUniversité de TunisTunisTunisia
  2. 2.IRISAUniversité de Rennes IRennesFrance
  3. 3.LARODEC, IHEC CarthageUniversité de CarthageTunisTunisia
  4. 4.Centre d’Etude et de Recherche des TélécommunicationsTunisTunisia

Personalised recommendations