Handling Revision Inconsistencies: Towards Better Explanations

  • Fabian SchmidtEmail author
  • Jörg Gebhardt
  • Rudolf Kruse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9161)


When dealing with complex knowledge, inconsistencies become a big problem. Due to the complexity of modern knowledge systems, usually a manual elimination of inconsistencies by a domain expert is preferable, since automated systems are most of the time not able to properly model and use the domain knowledge of an expert. In order to eliminate an inconsistency correctly, with respect to the specific domain, an expert needs a proper understanding of that inconsistency respectively the components that constitute it. Especially in our focus area of inconsistencies that occur during the revision of probability distributions, creating useful explanations is in most cases still a manual and hence expensive effort. In this work we discuss how to automatically create groupings of partitions created by revision assignments and how explanations can benefit from those grouped partitions.


  1. 1.
    Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symbolic Log. 50(02), 510–530 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Borgelt, C., Steinbrecher, M., Kruse, R.: Graphical Models - Representations for Learning, Reasoning and Data Mining. Wiley, Chichester (2009)zbMATHGoogle Scholar
  3. 3.
    Darwiche, A.: On the logic of iterated belief revision. Artif. Intell. 89(1–2), 1–29 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4), 364–366 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gabbay, D.: Controlled revision - an algorithmic approach for belief revision. J. Logic Comput. 13(1), 3–22 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gebhardt, J., Borgelt, C., Kruse, R., Detmer, H.: Knowledge revision in markov networks. Mathware Soft Comput. 11(2–3), 93–107 (2004)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gebhardt, J., Detmer, H., Madsen, A.L.: Predicting parts demand in the automotive industry-an application of probabilistic graphical models. In: Proceedings of the International Joint Conference on Uncertainty in Artificial Intelligence (2003)Google Scholar
  8. 8.
    Gebhardt, J., Klose, A., Detmer, H., Ruegheimer, F., Kruse, R.: Graphical models for industrial planning on complex domains. In: del la Riccia, G, e.a. (ed.) Decision Theory and Multi-Agent Planning, pp. 131–143. No. 482 in CISM Courses and Lectures. Springer (2006)Google Scholar
  9. 9.
    Gebhardt, J., Klose, A., Wendler, J.: Markov network revision: on the handling of inconsistencies. In: Moewes, C., Nürnberger, A. (eds.) Computational Intelligence in Intelligent Data Analysis. SCI, vol. 445, pp. 153–165. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press, Cambridge (1988)zbMATHGoogle Scholar
  11. 11.
    Kruse, R., et al.: Computational Intelligence. A Methodological Introduction. Springer, London (2013) zbMATHGoogle Scholar
  12. 12.
    Nebel, B.: Base revision operations and schemes: representation, semantics and complexity. In: Proceedings of the 11th ECAI 1994, Amsterdam, The Netherlands, pp. 341–345. Wiley (1994)Google Scholar
  13. 13.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1991)zbMATHGoogle Scholar
  14. 14.
    Schmidt, F., Gebhardt, J., Kruse, R.: Handling revision inconsistencies: creating useful explanations. In: HICSS-48, Proceedings, 5–8 January 2015, Koloa, Kauai, HI, USA, pp. 1–8. IEEE Computer Society (2015)Google Scholar
  15. 15.
    Schmidt, F., Wendler, J., Gebhardt, J., Kruse, R.: Handling inconsistencies in the revision of probability distributions. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., de Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS, vol. 8073, pp. 598–607. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Sibson, R.: Slink: An optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30–34 (1973)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley, New York (1990)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ISC GebhardtCelleGermany
  2. 2.Otto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations