Advertisement

Handling Inter-object Occlusion for Multi-object Tracking Based on Attraction Force Constraint

  • Yuke LiEmail author
  • Isabelle Bloch
  • Weiming Shen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)

Abstract

This paper presents a novel social interaction relation, attraction (interaction that would lead to occlusion for inter-object) for multi-object tracking to handle occlusion issue. We propose to build attraction by utilizing spatial-temporal information from 2D image plane, such as decomposed distance between objects. Then pairwise attraction force is obtained by the modeled attraction. Lastly, the attraction force is used to improve tracking when hierarchical data association performs. To meet requirements of practical application, we have our method evaluated on widely used PETS 2009 datasets. Experimental results show that our method achieves results on par with, or better than state-of-the-art methods.

Keywords

Attraction force Occlusion handling Multi-object tracking 

References

  1. 1.
    Andriyenko, A., Roth, S., Schindler, K.: An analytical formulation of global occlusion reasoning for multi-target tracking. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1839–1846. IEEE (2011)Google Scholar
  2. 2.
    Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intel. 33(9), 1820–1833 (2011)CrossRefGoogle Scholar
  3. 3.
    Chang, X., Zheng, W.S., Zhang, J.: Learning Person-Person interaction in collective activity recognition. IEEE Trans. Image Proces. 24(6), 1905–1918 (2015)Google Scholar
  4. 4.
    Choi, W., Chao, Y.W., Pantofaru, C., Savarese, S.: Understanding indoor scenes using 3d geometric phrases. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 33–40. IEEE (2013)Google Scholar
  5. 5.
    Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intel. 32(9), 1627–1645 (2010)CrossRefGoogle Scholar
  6. 6.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)CrossRefGoogle Scholar
  7. 7.
    Hua, Y., Alahari, K., Schmid, C.: Occlusion and motion reasoning for long-term tracking. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 172–187. Springer, Heidelberg (2014) Google Scholar
  8. 8.
    Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Bowers, R., Boonstra, M., Korzhova, V., Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol. IEEE Trans. Pattern Anal. Mach. Intel. 31(2), 319–336 (2009)CrossRefGoogle Scholar
  9. 9.
    Kuhn, H.W.: The hungarian method for the assignment problem. In: 50 Years of Integer Programming 1958–2008, pp. 29–47. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Nummiaro, K., Koller-Meier, E., Van Gool, L.: An adaptive color-based particle filter. Image Vis. Comput. 21(1), 99–110 (2003)CrossRefGoogle Scholar
  11. 11.
    Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)Google Scholar
  12. 12.
    Possegger, H., Mauthner, T., Roth, P.M., Bischof, H.: Occlusion geodesics for online multi-object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  13. 13.
    Ramanathan, V., Yao, B., Fei-Fei, L.: Social role discovery in human events. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2475–2482. IEEE (2013)Google Scholar
  14. 14.
    Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., Schiele, B.: Learning people detectors for tracking in crowded scenes. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1049–1056. IEEE (2013)Google Scholar
  15. 15.
    Yang, B., Nevatia, R.: Multi-target tracking by online learning of non-linear motion patterns and robust appearance models. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1918–1925. IEEE (2012)Google Scholar
  16. 16.
    Zhang, J., Presti, L., Sclaroff, S.: Online Multi-person Tracking by Tracker Hierarchy. In: 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance (AVSS), pp. 379–385, September 2012Google Scholar
  17. 17.
    Zhang, T., Jia, K., Xu, C., Ma, Y., Ahuja, N.: Partial occlusion handling for visual tracking via robust part matching. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1258–1265. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.State Key Laboratory of LIESMARSWuhan UniversityWuhanChina

Personalised recommendations