Advertisement

Detecting Parked Vehicles in Static Images Using Simple Spectral Features in the ‘SM4Public’ System

  • Dariusz FrejlichowskiEmail author
  • Katarzyna Gościewska
  • Adam Nowosielski
  • Paweł Forczmański
  • Radosław Hofman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)

Abstract

In the paper, the use of selected algorithms for the detection of specific objects and extraction of their characteristics from static images is presented. The problem concerns the selection of algorithms to be implemented in the ‘SM4Public’ security system for public spaces and is focused on specific system working scenario: detecting vehicles parked in restricted areas. Two popular feature extractors based on the Discrete Cosine Transform and Discrete Fourier Transform were experimentally tested. The paper contains the description of the ‘SM4Public’ system, explanation of the problem and presentation of similar solutions given in the literature. The stress is put on the definition of the employed feature extractors and the description of the experimental results.

Keywords

Feature Vector Video Sequence Discrete Cosine Transform Discrete Fourier Transform Video Surveillance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The project “Security system for public spaces—‘SM4Public’ prototype construction and implementation” (original title: Budowa i wdrożenie prototypu systemu bezpieczeństwa przestrzeni publicznej ‘SM4Public’) is a project co-founded by European Union (EU) (project number PL: POIG.01.04.00-32-244/13, value: 12.936.684,77 PLN, EU contribution: 6.528.823,81 PLN, realization period: 01.06.2014–31.10.2015). European Funds—for the development of innovative economy (Fundusze Europejskie—dla rozwoju innowacyjnej gospodarki).

References

  1. 1.
    Frejlichowski, D., Forczmański, P., Nowosielski, A., Gościewska, K., Hofman, R.: SmartMonitor: an approach to simple, intelligent and affordable visual surveillance system. In: Bolc, L., et al. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 726–734. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Nowosielski, A., Hofman, R.: Extraction of the foreground regions by means of the adaptive background modelling based on various colour components for a visual surveillance system. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 351–360. Springer International Publishing, Switzerland (2013)Google Scholar
  3. 3.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Hofman, R.: ‘SmartMonitor’ – an intelligent security system for the protection of individuals and small properties with the possibility of home automation. Sensors 14, 9922–9948 (2014)CrossRefGoogle Scholar
  4. 4.
    Frejlichowski, D., Gościewska, K., Forczmański, P., Hofman, R.: Application of foreground object patterns analysis for event detection in an innovative video surveillance system. Pattern Anal. Appl., 1–12 (2014)Google Scholar
  5. 5.
    Pantrigo, J., Hernández, J., Sánchez, A.: Multiple and variable target visual tracking for video surveillance applications. Pattern Recogn. Lett. 31(12), 1577–1590 (2010)CrossRefGoogle Scholar
  6. 6.
    Fabian, T.: An algorithm for parking lot occupation detection. In: Proceedings of the 7th Computer Information Systems and Industrial Management Applications, pp. 165–170 (2008)Google Scholar
  7. 7.
    Bin, Z., Dalin, J., Fang, W., Tingting, W.: A design of parking space detector based on video image. In: 9th International Conference on Electronic Measurement & Instruments, pp. 2–253–2-256 (2009)Google Scholar
  8. 8.
    Maddalena, L., Petrosino, A.: Self organizing and fuzzy modelling for parked vehicles detection. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 422–433. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Lee, J.T., Ryoo, M.S., Riley, M., Aggarwal, J.K.: Real-time detection of illegally parked vehicles using 1-D transformation. In: IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 254–259 (2007)Google Scholar
  10. 10.
    Pamuła, W.: Detection of vehicles in a video stream using spatial frequency domain features. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 494–501. Springer International Publishing, Switzerland (2014)Google Scholar
  11. 11.
    Pratt, W.K.: Digital Image Processing: PIKS Inside, 3rd edn. John Wiley & Sons Inc, Hoboken (2001)CrossRefGoogle Scholar
  12. 12.
    Kukharev, G., Nowosielski, A.: Face recognition using simple feature extractors. multimedia and intelligent techniques. Spec. Issue Live Biometrics Secur. 1(1), 87–98 (2005)Google Scholar
  13. 13.
    Han, F., Shan, Y., Cekander, R., Sawhney, H., Kumar, R.: A two-stage approach to people and vehicle detection with HOG-based SVM. In: Performance Metrics for Intelligent Systems Workshop, pp. 133–140 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dariusz Frejlichowski
    • 1
    Email author
  • Katarzyna Gościewska
    • 1
    • 2
  • Adam Nowosielski
    • 1
  • Paweł Forczmański
    • 1
  • Radosław Hofman
    • 2
  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology, SzczecinSzczecinPoland
  2. 2.Smart Monitor Sp. Z o.o.SzczecinPoland

Personalised recommendations