Advertisement

Application of the General Shape Analysis in Determining the Class of Binary Object Silhouettes in the Video Surveillance System

  • Katarzyna GościewskaEmail author
  • Dariusz Frejlichowski
  • Radosław Hofman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)

Abstract

The paper discusses the problem of the General Shape Analysis (GSA) and considers an attempt to adapt this approach for binary silhouette analysis in the ‘SM4Public’ system. In the GSA, for a particular test shape, one or a few most similar, general templates are indicated. Shapes are represented using shape descriptors and representations are matched using similarity or dissimilarity measure. In the paper the GSA is explained and the application of the GSA in the ‘SM4Public’ system is investigated. Using a test dataset containing binary silhouettes of various objects (extracted from the ‘SM4Public’ video database) and selected shape description algorithms, an experiment was carried out. The aim of the experiment was to verify whether the GSA can be applied in the ‘SM4Public’ system as a solution for determining the class of binary silhouettes (as a preliminary classification).

Notes

Acknowledgments

The project “Security system for public spaces — ‘SM4Public’ prototype construction and implementation” (original title: Budowa i wdrożenie prototypu systemu bezpieczeństwa przestrzeni publicznej ’SM4Public’) is a project co-founded by European Union (EU) (project number PL: POIG.01.04.00-32-244/13, value: 12.936.684,77 PLN, EU contribution: 6.528.823,81 PLN, realization period: 01.06.2014–31.10.2015). European Funds—for the development of innovative economy (Fundusze Europejskie—dla rozwoju innowacyjnej gospodarki).

References

  1. 1.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37, 1–19 (2004)zbMATHCrossRefGoogle Scholar
  2. 2.
    Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Mach. Vis. Appl. 14, 172–184 (2003)CrossRefGoogle Scholar
  3. 3.
    Rosin, P.L.: Computing global shape measures. In: Chen, C.H., Wang, P.S.P. (eds.) Hand-book of Pattern Recognition and Computer Vision, 3rd edn, pp. 177–196. World Scientific, River Edge (2005)CrossRefGoogle Scholar
  4. 4.
    Rosin, P.L.: Measuring rectangularity. Mach. Vision Appl. 11(4), 191–196 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Frejlichowski, D.: An experimental comparison of seven shape descriptors in the general shape analysis problem. In: Campilho, A., Kamel, M. (eds.) ICIAR 2010. LNCS, vol. 6111, pp. 294–305. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Frejlichowski, D., Gościewska, K.: Application of 2D fourier descriptors and similarity measures to the general shape analysis problem. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2012. LNCS, vol. 7594, pp. 371–378. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Gościewska, K., Frejlichowski, D.: An experimental comparison of fourier-based shape descriptors in the general shape analysis problem. In: Burduk, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) CORES 2013. AISC, vol. 226, pp. 345–354. Springer, Heidelberg (2013) Google Scholar
  8. 8.
    Frejlichowski, D., Gościewska, K.: The application of simple shape mesures based on a Minimum Bounding Rectangle to the General Shape Analysis problem. J. Theor. Appl. Comput. Sci. 7(4), 35–41 (2013)Google Scholar
  9. 9.
    Frejlichowski, D., Forczmański, P.: General shape analysis applied to stamps retrieval from scanned documents. In: Dicheva, D., Dochev, D. (eds.) AIMSA 2010. LNCS, vol. 6304, pp. 251–260. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Zhang, D., Lu, G.: Shape-based image retrieval using generic fourier descriptor. Sig. Process. Image 17(10), 825–848 (2002)CrossRefGoogle Scholar
  11. 11.
    Rauber, T.W.: Two-dimensional shape description. Technical report: GR UNINOVA-RT-10-94, Universidade Nova de Lisboa (1994)Google Scholar
  12. 12.
    Wee, C.-Y., Paramesran, R.: On the computational aspects of Zernike moments. Image Vis. Comput. 25(6), 967–980 (2007)CrossRefGoogle Scholar
  13. 13.
    Frejlichowski, D.: Trademark recognition using PDH shape descriptor. Ann. Univ. Mariae Curie-Sklodowska, Sectio: Informatica 8(1), 67–73 (2008)Google Scholar
  14. 14.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theor. 8, 179–187 (1962)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Katarzyna Gościewska
    • 1
    • 2
    Email author
  • Dariusz Frejlichowski
    • 1
  • Radosław Hofman
    • 2
  1. 1.Szczecin, Faculty of Computer ScienceWest Pomeranian University of TechnologySzczecinPoland
  2. 2.Smart Monitor sp. Z o.o.SzczecinPoland

Personalised recommendations