Advertisement

Micro Genetic and Evolutionary Feature Extraction: An Exploratory Data Analysis Approach for Multispectral Iris Recognition

  • Pablo A. Arias
  • Joseph Shelton
  • Kaushik RoyEmail author
  • Foysal Ahmad
  • Gerry V. Dozier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9164)

Abstract

Most of the current iris recognition methods utilize the iris images that are captured between the 700 and 900 nm range for verification and identification purposes. However, iris images acquired beyond this narrow range have shown to uncover identifiable information not previously available within the 700 − 900 nm near-infrared range (NIR). In this work, we will employ a feature extraction technique on iris images from 450 nm to 1550 nm to elicit iris information on a wider electromagnetic spectrum. We will employ the use of a Genetic and Evolutionary Feature Extraction technique (GEFE) and compare the performance against an exploratory data analytic approach, referred to as mGEFE. The mGEFE technique discovers salient pixel regions in iris images. We also perform cross spectral analysis among the wavelengths. Results show that GEFE outperforms mGEFE and LBP in regards to recognition accuracy, but mGEFE produces FEs that show salient areas of iris images to explore for optimal recognition.

Keywords

Iris recognition Exploratory data analysis Genetic and evolutionary feature extraction Genetic and evolutionary computation 

Notes

Acknowledgements

This research was funded by the Army Research Laboratory (ARL) for the multi-university, Center for Advanced Studies in Identity Sciences (CASIS) and by the National Science Foundation (NSF), Science & Technology Center: Bio/Computational Evolution in Action Consortium (BEACON). The authors would like to thank the ARL, NSF, and BEACON for their support of this research.

References

  1. 1.
    Popplewell, K., Roy, K., Ahmad, F., Shelton, J.: Multispectral iris recognition utilizing Hough transform and modified LBP, pp. 1396–1399. Proc. in IEEE Intl. Conf. on Systems, Man and Cybernetics (2014)Google Scholar
  2. 2.
    Boyce, C., Ross, A., Monaco, M., Hornak, L., Li, X.: Multispectral iris analysis: a preliminary study. In: Proceedings of Computer Vision and Pattern Recognition Workshop, pp. 51–59 (2006)Google Scholar
  3. 3.
    Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture features based on Gabor filters. IEEE Trans. on Image Process. 11, 1160–1167 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Pang, Y., Li, X., Yuan, Y., Tao, D., Pan, J.: Fast Haar transform based feature extraction for face representation and recognition. IEEE Trans. Inf. Forensics Secur. 4(3), 441–450 (2009)CrossRefGoogle Scholar
  5. 5.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  6. 6.
    Ojala, T., Pietikainen, M.: Unsupervised texture segmentation using feature distributions. Pattern Recogn. 32(3), 477–486 (1999)CrossRefGoogle Scholar
  7. 7.
    Mäenpää, T.: The Local binary pattern approach to texture analysis: Extensions and applications. Oulun yliopisto (2003)Google Scholar
  8. 8.
    Shelton, J., Dozier, G., Bryant, K., Adams, J., Popplewell, K., Abegaz, T., Ricanek, K.: Genetic based LBP feature extraction and selection for facial recognition. In: Proceedings of ACM Annual Southeast Regional Conference, pp. 197–200 (2011)Google Scholar
  9. 9.
    Shelton, J., Dozier, G., Bryant, K., Small, L., Adams, J., Leflore, D., Alford, A., Woodard, D., Ricanek, K.: Genetic and Evolutionary Feature Extraction via X-TOOLSS. In: Proceedings of International Conference on Genetic and Evolutionary Methods (2011)Google Scholar
  10. 10.
    Shelton, J., Roy, K., O’Connor, B., Dozier, G.: Mitigating iris-based replay attacks. Intl. J. Mach. Learn. Comput. 4(3), 204–209 (2014)CrossRefGoogle Scholar
  11. 11.
    O’Connor, B., Roy, K., Shelton, J., Dozier, G.: Iris recognition using fuzzy level set and GEFE. Intl. J. Mach. Learn. Comput. 4(3), 204–209 (2014)CrossRefGoogle Scholar
  12. 12.
    Jones, K.: Exploratory Data Analysis. National Physical Laboratory (2004)Google Scholar
  13. 13.
    1.1.1. What Is EDA? 1.1.1. What Is EDA? National Institute of Science and Technology, n.d. Web, 19 February (2015)Google Scholar
  14. 14.
    Le Gallo, J., Ertur, C.: Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980–1995. Pap. Reg. sci. 82(2), 175–201 (2003)CrossRefGoogle Scholar
  15. 15.
    Tukey, J.W.: Exploratory data analysis (1977)Google Scholar
  16. 16.
    Behrens, J.T.: Principles and procedures of exploratory data analysis. Psychol. Methods 2(2), 131 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Multispectral Iris Dataset: Portions of the research in this paper use the Consolidated Multispectral Iris Dataset of iris images collected under the Consolidated Multispectral Iris Dataset Program, sponsored by the US GovernmentGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pablo A. Arias
    • 1
  • Joseph Shelton
    • 1
  • Kaushik Roy
    • 1
    Email author
  • Foysal Ahmad
    • 1
  • Gerry V. Dozier
    • 1
  1. 1.North Carolina A&T State UniversityGreensboroUSA

Personalised recommendations